

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 240
Argonne, IL 60439

www.anl.gov

ANL-95/11 Rev 3.14

PETSc Users Manual
Revision 3.14

Mathematics and Computer Science Division

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,
at 9700 South Cass Avenue, Lemont, Illinois 60439. For information about Argonne
and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a
growing number of pre-1991 documents are available free via DOE's SciTech Connect
(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the National
Technical Information Service (NTIS):

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandra, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703) 605-6000
Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the Office of
Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,
Argonne National Laboratory, or UChicago Argonne, LLC.

PETSc Users Manual
Release 3.14.2

The PETSc Development Team

Dec 03, 2020

CONTENTS

1 Introduction to PETSc 3
1.1 About This Manual . 3
1.2 Getting Started . 4

1.2.1 Suggested Reading . 4
1.2.2 Running PETSc Programs . 6
1.2.3 Writing PETSc Programs . 7
1.2.4 Simple PETSc Examples . 8
1.2.5 Profiling Programs . 19
1.2.6 Writing Application Codes with PETSc . 21
1.2.7 Citing PETSc . 22
1.2.8 Directory Structure . 23

2 Programming with PETSc 25
2.1 Vectors and Parallel Data . 25

2.1.1 Creating and Assembling Vectors . 25
2.1.2 Basic Vector Operations . 28
2.1.3 Indexing and Ordering . 29
2.1.4 Structured Grids Using Distributed Arrays . 32
2.1.5 Vectors Related to Unstructured Grids . 38

2.2 Matrices . 41
2.2.1 Creating and Assembling Matrices . 42
2.2.2 Basic Matrix Operations . 51
2.2.3 Matrix-Free Matrices . 52
2.2.4 Other Matrix Operations . 53
2.2.5 Partitioning . 55

2.3 KSP: Linear System Solvers . 56
2.3.1 Using KSP . 57
2.3.2 Solving Successive Linear Systems . 58
2.3.3 Krylov Methods . 58
2.3.4 Preconditioners . 64
2.3.5 Solving Block Matrices . 76
2.3.6 Solving Singular Systems . 79
2.3.7 Using External Linear Solvers . 79

2.4 SNES: Nonlinear Solvers . 81
2.4.1 Basic SNES Usage . 82
2.4.2 The Nonlinear Solvers . 90
2.4.3 General Options . 94
2.4.4 Inexact Newton-like Methods . 96
2.4.5 Matrix-Free Methods . 97
2.4.6 Finite Difference Jacobian Approximations . 112

i

2.4.7 Variational Inequalities . 114
2.4.8 Nonlinear Preconditioning . 114

2.5 TS: Scalable ODE and DAE Solvers . 115
2.5.1 Basic TS Options . 117
2.5.2 DAE Formulations . 119
2.5.3 Using Implicit-Explicit (IMEX) Methods . 120
2.5.4 GLEE methods . 122
2.5.5 Using fully implicit methods . 123
2.5.6 Using the Explicit Runge-Kutta timestepper with variable timesteps 124
2.5.7 Special Cases . 124
2.5.8 Monitoring and visualizing solutions . 125
2.5.9 Error control via variable time-stepping . 125
2.5.10 Handling of discontinuities . 126
2.5.11 Using TChem from PETSc . 127
2.5.12 Using Sundials from PETSc . 127

2.6 Performing sensitivity analysis . 128
2.6.1 Using the discrete adjoint methods . 128
2.6.2 Checkpointing . 130

2.7 Solving Steady-State Problems with Pseudo-Timestepping 131
2.8 High Level Support for Multigrid with KSPSetDM() and SNESSetDM() 132

2.8.1 Adaptive Interpolation . 133
2.9 DMPlex: Unstructured Grids in PETSc . 135

2.9.1 Representing Unstructured Grids . 135
2.9.2 Data on Unstructured Grids . 137
2.9.3 Evaluating Residuals . 139
2.9.4 Networks . 140

3 Additional Information 145
3.1 PETSc for Fortran Users . 145

3.1.1 C vs. Fortran Interfaces . 145
3.1.2 Sample Fortran Programs . 148

3.2 Using MATLAB with PETSc . 161
3.2.1 Dumping Data for MATLAB . 161
3.2.2 Sending Data to an Interactive MATLAB Session . 162
3.2.3 Using the MATLAB Compute Engine . 163

3.3 Profiling . 164
3.3.1 Basic Profiling Information . 164
3.3.2 Profiling Application Codes . 169
3.3.3 Profiling Multiple Sections of Code . 170
3.3.4 Restricting Event Logging . 171
3.3.5 Interpreting -log_info Output: Informative Messages 171
3.3.6 Time . 172
3.3.7 Saving Output to a File . 172
3.3.8 Accurate Profiling and Paging Overheads . 172

3.4 Hints for Performance Tuning . 173
3.4.1 Maximizing Memory Bandwidth . 173
3.4.2 Performance Pitfalls and Advice . 179

3.5 Other PETSc Features . 184
3.5.1 PETSc on a process subset . 184
3.5.2 Runtime Options . 184
3.5.3 Viewers: Looking at PETSc Objects . 186
3.5.4 Using SAWs with PETSc . 188
3.5.5 Debugging . 189
3.5.6 Error Handling . 189

ii

3.5.7 Numbers . 191
3.5.8 Parallel Communication . 191
3.5.9 Graphics . 191
3.5.10 Emacs Users . 196
3.5.11 VS Code Users . 197
3.5.12 Vi and Vim Users . 197
3.5.13 Eclipse Users . 197
3.5.14 Qt Creator Users . 198
3.5.15 Visual Studio Users . 200
3.5.16 XCode Users (The Apple GUI Development System) 200

3.6 Unimportant and Advanced Features of Matrices and Solvers 201
3.6.1 Extracting Submatrices . 201
3.6.2 Matrix Factorization . 201
3.6.3 Unimportant Details of KSP . 203
3.6.4 Unimportant Details of PC . 204

3.7 Running PETSc Tests . 205
3.7.1 Quick start with the tests . 205
3.7.2 Understanding test output and more information . 205

3.8 Acknowledgments . 207

Bibliography 211

iii

iv

PETSc Users Manual, Release 3.14.2

Argonne National Laboratory

Mathematics and Computer Science Division

Prepared by

S. Balay 1, S. Abhyankar 2, M. Adams 3, J. Brown 1, P. Brune 1, K. Buschelman 1, L. Dalcin 4,
A. Dener 1, V. Eijkhout 6, W. Gropp 1, D. Karpeyev 1, D. Kaushik 1, M. Knepley 1, D. May 7,
L. Curfman McInnes 1, R. Mills 1, T. Munson 1, K. Rupp 1, P. Sanan 8, B. Smith 1, S. Zampini
4, H. Zhang 5, and H. Zhang 1

1Mathematics and Computer Science Division, Argonne National Laboratory
2Electricity Infrastructure and Buildings Division, Pacific Northwest National Laboratory
3Computational Research, Lawrence Berkeley National Laboratory
4Extreme Computing Research Center, King Abdullah University of Science and Technology
5Computer Science Department, Illinois Institute of Technology
6Texas Advanced Computing Center, University of Texas at Austin
7Department of Earth Sciences, University of Oxford
8Institute of Geophysics, ETH Zurich

This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S.
Department of Energy, under Contract DE-AC02-06CH11357.

CONTENTS 1

PETSc Users Manual, Release 3.14.2

2 CONTENTS

CHAPTER

ONE

INTRODUCTION TO PETSC

1.1 About This Manual

This manual describes the use of the Portable, Extensible Toolkit for Scientific Computation (PETSc) for
the numerical solution of partial differential equations and related problems on high-performance computers.
PETSc is a suite of data structures and routines that provide the building blocks for the implementation
of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all
distributed memory communication.

PETSc includes a large suite of parallel linear solvers, nonlinear solvers, and time integrators that may be
used in application codes written in Fortran, C, C++, and Python (via petsc4py; see Getting Started).
PETSc provides many of the mechanisms needed within parallel application codes, such as parallel matrix
and vector assembly routines. The library is organized hierarchically, enabling users to employ the level
of abstraction that is most appropriate for a particular problem. By using techniques of object-oriented
programming, PETSc provides enormous flexibility for users.

PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper learning
curve than packages such as MATLAB or a simple subroutine library. In particular, for individuals without
some computer science background, experience programming in C, C++, python, or Fortran and experience
using a debugger such as gdb or lldb, it may require a significant amount of time to take full advantage of
the features that enable efficient software use. However, the power of the PETSc design and the algorithms
it incorporates may make the efficient implementation of many application codes simpler than “rolling them”
yourself.

• For many tasks a package such as MATLAB is often the best tool; PETSc is not intended for the
classes of problems for which effective MATLAB code can be written.

• There are several packages (listed on https://www.mcs.anl.gov/petsc), built on PETSc, that may
satisfy your needs without requiring directly using PETSc. We recommend reviewing these packages
functionality before starting to code directly with PETSc.

• PETSc should not be used to attempt to provide a “parallel linear solver” in an otherwise sequential
code. Certainly all parts of a previously sequential code need not be parallelized but the matrix
generation portion must be parallelized to expect any kind of reasonable performance. Do not expect
to generate your matrix sequentially and then “use PETSc” to solve the linear system in parallel.

Since PETSc is under continued development, small changes in usage and calling sequences of routines will
occur. PETSc has been supported for twenty-five years; see https://www.mcs.anl.gov/petsc/miscellaneous/
mailing-lists.html for information on contacting support.

We welcome any reports of corrections for this document at petsc-maint@mcs.anl.gov.

Manual pages and example usage : https://www.mcs.anl.gov/petsc/documentation/

Installing PETSc : https://www.mcs.anl.gov/petsc/documentation/installation.html

3

https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc/miscellaneous/mailing-lists.html
https://www.mcs.anl.gov/petsc/miscellaneous/mailing-lists.html
https://www.mcs.anl.gov/petsc/documentation/
https://www.mcs.anl.gov/petsc/documentation/installation.html

PETSc Users Manual, Release 3.14.2

Tutorials : https://www.mcs.anl.gov/petsc/documentation/tutorials/index.html

1.2 Getting Started

PETSc consists of a collection of classes, which are discussed in detail in later parts of the manual (Pro-
gramming with PETSc and Additional Information). The important PETSc classes include

• index sets (IS), including permutations, for indexing into vectors, renumbering, etc;

• vectors (Vec);

• matrices (Mat) (generally sparse);

• over thirty Krylov subspace methods (KSP);

• dozens of preconditioners, including multigrid, block solvers, and sparse direct solvers (PC);

• nonlinear solvers (SNES);

• timesteppers for solving time-dependent (nonlinear) PDEs, including support for differential algebraic
equations, and the computation of adjoints (sensitivities/gradients of the solutions) (TS);

• managing interactions between mesh data structures and vectors, matrices, and solvers (DM);

• scalable optimization algorithms (Tao).

Each class consist of an abstract interface (simply a set of calling sequences; an abstract base class in C++)
and an implementation for each algorithm and data structure. Thus, PETSc provides clean and effective
codes for the various phases of solving PDEs, with a uniform approach for each type of problem. This
design enables easy comparison and use of different algorithms (for example, to experiment with different
Krylov subspace methods, preconditioners, or truncated Newton methods). Hence, PETSc provides a rich
environment for modeling scientific applications as well as for rapid algorithm design and prototyping.

The classes enable easy customization and extension of both algorithms and implementations. This approach
promotes code reuse and flexibility, and also separates the issues of parallelism from the choice of algorithms.
The PETSc infrastructure creates a foundation for building large-scale applications.

It is useful to consider the interrelationships among different pieces of PETSc. Numerical Libraries in
PETSc is a diagram of some of these pieces. The figure illustrates the library’s hierarchical organization,
which enables users to employ the solvers that are most appropriate for a particular problem.

1.2.1 Suggested Reading

The manual is divided into three parts:

• Introduction to PETSc

• Programming with PETSc

• Additional Information

Introduction to PETSc describes the basic procedure for using the PETSc library and presents two simple
examples of solving linear systems with PETSc. This section conveys the typical style used throughout the
library and enables the application programmer to begin using the software immediately.

Programming with PETSc explains in detail the use of the various PETSc libraries, such as vectors, matrices,
index sets, linear and nonlinear solvers, and graphics. Additional Information describes a variety of useful
information, including profiling, the options database, viewers, error handling, and some details of PETSc
design.

4 Chapter 1. Introduction to PETSc

https://www.mcs.anl.gov/petsc/documentation/tutorials/index.html

PETSc Users Manual, Release 3.14.2

Fig. 1.1: Numerical Libraries in PETSc

1.2. Getting Started 5

PETSc Users Manual, Release 3.14.2

PETSc has evolved to become quite a comprehensive package, and therefore this manual can be rather intim-
idating for new users. Bear in mind that PETSc can be used efficiently before one understands all of the ma-
terial presented here. Furthermore, the definitive reference for any PETSc function is always the online man-
ual page. Manual pages for all PETSc functions can be accessed at www.mcs.anl.gov/petsc/documentation.
The manual pages provide hyperlinked indices (organized by both concept and routine name) to the tutorial
examples and enable easy movement among related topics.

Visual Studio Code , Eclipse, Emacs, and Vim users may find their development environment’s options
for searching in the source code (for example, etags ctags for Emacs and Vim) are extremely useful for
exploring the PETSc source code. Details of these feature are provided in Emacs Users.

The complete PETSc distribution, manual pages, and additional information are available via the PETSc
home page. The PETSc home page also contains details regarding installation, new features and changes in
recent versions of PETSc, machines that we currently support, and a frequently asked questions (FAQ) list.

Note to Fortran Programmers: In most of the manual, the examples and calling sequences are given for
the C/C++ family of programming languages. However, Fortran programmers can use all of the functionality
of PETSc from Fortran, with only minor differences in the user interface. PETSc for Fortran Users provides
a discussion of the differences between using PETSc from Fortran and C, as well as several complete Fortran
examples.

Note to Python Programmers: To program with PETSc in Python you need to install the PETSc4py
package developed by Lisandro Dalcin. This can be done by configuring PETSc with the option --
download-petsc4py. See the PETSc installation guide for more details.

1.2.2 Running PETSc Programs

Before using PETSc, the user must first set the environmental variable PETSC_DIR, indicating the full path
of the PETSc home directory. For example, under the UNIX bash shell a command of the form

export PETSC_DIR=$HOME/petsc

can be placed in the user’s .bashrc or other startup file. In addition, the user may need to set the
environment variable PETSC_ARCH to specify a particular configuration of the PETSc libraries. Note that
PETSC_ARCH is just a name selected by the installer to refer to the libraries compiled for a particular
set of compiler options and machine type. Using different values of PETSC_ARCH allows one to switch
between several different sets (say debug and optimized) of libraries easily. To determine if you need to set
PETSC_ARCH, look in the directory indicated by PETSC_DIR, if there are subdirectories beginning with
arch then those subdirectories give the possible values for PETSC_ARCH.

All PETSc programs use the MPI (Message Passing Interface) standard for message-passing communication
[For94]. Thus, to execute PETSc programs, users must know the procedure for beginning MPI jobs on their
selected computer system(s). For instance, when using the MPICH implementation of MPI and many others,
the following command initiates a program that uses eight processors:

mpiexec -n 8 ./petsc_program_name petsc_options

PETSc also comes with a script that automatically uses the correct mpiexec for your configuration.

${PETSC_DIR}/lib/petsc/bin/petscmpiexec -n 8 ./petsc_program_name petsc_options

All PETSc-compliant programs support the use of the -help option as well as the -version option.

Certain options are supported by all PETSc programs. We list a few particularly useful ones below; a
complete list can be obtained by running any PETSc program with the option -help.

• -log_view - summarize the program’s performance (see Profiling)

6 Chapter 1. Introduction to PETSc

https://www.mcs.anl.gov/petsc/documentation/
https://code.visualstudio.com/
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc/documentation/installation.html
https://www.mpich.org/

PETSc Users Manual, Release 3.14.2

• -fp_trap - stop on floating-point exceptions; for example divide by zero

• -malloc_dump - enable memory tracing; dump list of unfreed memory at conclusion of the run, see
Detecting Memory Allocation Problems,

• -malloc_debug - enable memory debugging (by default this is activated for the debugging version
of PETSc), see Detecting Memory Allocation Problems,

• -start_in_debugger [noxterm,gdb,lldb] [-display name] - start all processes in debug-
ger. See Debugging, for more information on debugging PETSc programs.

• -on_error_attach_debugger [noxterm,gdb,lldb] [-display name] - start debugger only
on encountering an error

• -info - print a great deal of information about what the program is doing as it runs

1.2.3 Writing PETSc Programs

Most PETSc programs begin with a call to

ierr = PetscInitialize(int *argc,char ***argv,char *file,char *help);if (ierr) return␣
↪→ierr;

which initializes PETSc and MPI. The arguments argc and argv are the command line arguments delivered
in all C and C++ programs. The argument file optionally indicates an alternative name for the PETSc
options file, .petscrc, which resides by default in the user’s home directory. Runtime Options provides
details regarding this file and the PETSc options database, which can be used for runtime customization.
The final argument, help, is an optional character string that will be printed if the program is run with the
-help option. In Fortran the initialization command has the form

call PetscInitialize(character(*) file,integer ierr)

PetscInitialize() automatically calls MPI_Init() if MPI has not been not previously initialized. In
certain circumstances in which MPI needs to be initialized directly (or is initialized by some other library),
the user can first call MPI_Init() (or have the other library do it), and then call PetscInitial-
ize(). By default, PetscInitialize() sets the PETSc “world” communicator PETSC_COMM_WORLD
to MPI_COMM_WORLD.

For those not familiar with MPI, a communicator is a way of indicating a collection of processes that will
be involved together in a calculation or communication. Communicators have the variable type MPI_Comm.
In most cases users can employ the communicator PETSC_COMM_WORLD to indicate all processes in a given
run and PETSC_COMM_SELF to indicate a single process.

MPI provides routines for generating new communicators consisting of subsets of processors, though most
users rarely need to use these. The book Using MPI, by Lusk, Gropp, and Skjellum [GLS94] provides an
excellent introduction to the concepts in MPI. See also the MPI homepage. Note that PETSc users need
not program much message passing directly with MPI, but they must be familiar with the basic concepts of
message passing and distributed memory computing.

All PETSc routines return a PetscErrorCode, which is an integer indicating whether an error has occurred
during the call. The error code is set to be nonzero if an error has been detected; otherwise, it is zero. For
the C/C++ interface, the error variable is the routine’s return value, while for the Fortran version, each
PETSc routine has as its final argument an integer error variable.

All PETSc programs should call PetscFinalize() as their final (or nearly final) statement, as given
below in the C/C++ and Fortran formats, respectively:

1.2. Getting Started 7

https://www.mcs.anl.gov/research/projects/mpi/

PETSc Users Manual, Release 3.14.2

ierr = PetscFinalize();
return ierr;

call PetscFinalize(ierr)

This routine handles options to be called at the conclusion of the program, and calls MPI_Finalize()
if PetscInitialize() began MPI. If MPI was initiated externally from PETSc (by either the user or
another software package), the user is responsible for calling MPI_Finalize().

1.2.4 Simple PETSc Examples

To help the user start using PETSc immediately, we begin with a simple uniprocessor example that solves
the one-dimensional Laplacian problem with finite differences. This sequential code, which can be found
in $PETSC_DIR/src/ksp/ksp/tutorials/ex1.c, illustrates the solution of a linear system with KSP,
the interface to the preconditioners, Krylov subspace methods, and direct linear solvers of PETSc. Following
the code we highlight a few of the most important parts of this example.

Listing: src/ksp/ksp/tutorials/ex1.c

static char help[] = "Solves a tridiagonal linear system with KSP.\n\n";

/*T
Concepts: KSP^solving a system of linear equations
Processors: 1

T*/

/*
Include "petscksp.h" so that we can use KSP solvers. Note that this file
automatically includes:

petscsys.h - base PETSc routines petscvec.h - vectors
petscmat.h - matrices petscpc.h - preconditioners
petscis.h - index sets
petscviewer.h - viewers

Note: The corresponding parallel example is ex23.c
*/
#include <petscksp.h>

int main(int argc,char **args)
{
Vec x, b, u; /* approx solution, RHS, exact solution */
Mat A; /* linear system matrix */
KSP ksp; /* linear solver context */
PC pc; /* preconditioner context */
PetscReal norm; /* norm of solution error */
PetscErrorCode ierr;
PetscInt i,n = 10,col[3],its;
PetscMPIInt size;
PetscScalar value[3];

ierr = PetscInitialize(&argc,&args,(char*)0,help);if (ierr) return ierr;
ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
if (size != 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_WRONG_MPI_SIZE,"This is a␣

↪→uniprocessor example only!");
(continues on next page)

8 Chapter 1. Introduction to PETSc

PETSc Users Manual, Release 3.14.2

(continued from previous page)
ierr = PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);CHKERRQ(ierr);

/* -
Compute the matrix and right-hand-side vector that define
the linear system, Ax = b.

- */

/*
Create vectors. Note that we form 1 vector from scratch and
then duplicate as needed.

*/
ierr = VecCreate(PETSC_COMM_WORLD,&x);CHKERRQ(ierr);
ierr = PetscObjectSetName((PetscObject) x, "Solution");CHKERRQ(ierr);
ierr = VecSetSizes(x,PETSC_DECIDE,n);CHKERRQ(ierr);
ierr = VecSetFromOptions(x);CHKERRQ(ierr);
ierr = VecDuplicate(x,&b);CHKERRQ(ierr);
ierr = VecDuplicate(x,&u);CHKERRQ(ierr);

/*
Create matrix. When using MatCreate(), the matrix format can
be specified at runtime.

Performance tuning note: For problems of substantial size,
preallocation of matrix memory is crucial for attaining good
performance. See the matrix chapter of the users manual for details.

*/
ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,n,n);CHKERRQ(ierr);
ierr = MatSetFromOptions(A);CHKERRQ(ierr);
ierr = MatSetUp(A);CHKERRQ(ierr);

/*
Assemble matrix

*/
value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;
for (i=1; i<n-1; i++) {

col[0] = i-1; col[1] = i; col[2] = i+1;
ierr = MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);

}
i = n - 1; col[0] = n - 2; col[1] = n - 1;
ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);
i = 0; col[0] = 0; col[1] = 1; value[0] = 2.0; value[1] = -1.0;
ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);
ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

/*
Set exact solution; then compute right-hand-side vector.

*/
ierr = VecSet(u,1.0);CHKERRQ(ierr);
ierr = MatMult(A,u,b);CHKERRQ(ierr);

/* -
Create the linear solver and set various options

- */

(continues on next page)

1.2. Getting Started 9

PETSc Users Manual, Release 3.14.2

(continued from previous page)
ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);

/*
Set operators. Here the matrix that defines the linear system
also serves as the matrix that defines the preconditioner.

*/
ierr = KSPSetOperators(ksp,A,A);CHKERRQ(ierr);

/*
Set linear solver defaults for this problem (optional).
- By extracting the KSP and PC contexts from the KSP context,

we can then directly call any KSP and PC routines to set
various options.

- The following four statements are optional; all of these
parameters could alternatively be specified at runtime via
KSPSetFromOptions();

*/
ierr = KSPGetPC(ksp,&pc);CHKERRQ(ierr);
ierr = PCSetType(pc,PCJACOBI);CHKERRQ(ierr);
ierr = KSPSetTolerances(ksp,1.e-5,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT);

↪→CHKERRQ(ierr);

/*
Set runtime options, e.g.,

-ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>
These options will override those specified above as long as
KSPSetFromOptions() is called _after_ any other customization
routines.

*/
ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);

/* -
Solve the linear system

- */
ierr = KSPSolve(ksp,b,x);CHKERRQ(ierr);

/*
View solver info; we could instead use the option -ksp_view to
print this info to the screen at the conclusion of KSPSolve().

*/
ierr = KSPView(ksp,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

/* -
Check the solution and clean up

- */
ierr = VecAXPY(x,-1.0,u);CHKERRQ(ierr);
ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);
ierr = KSPGetIterationNumber(ksp,&its);CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD,"Norm of error %g, Iterations %D\n",

↪→(double)norm,its);CHKERRQ(ierr);

/*
Free work space. All PETSc objects should be destroyed when they
are no longer needed.

*/
ierr = VecDestroy(&x);CHKERRQ(ierr); ierr = VecDestroy(&u);CHKERRQ(ierr);

(continues on next page)

10 Chapter 1. Introduction to PETSc

PETSc Users Manual, Release 3.14.2

(continued from previous page)
ierr = VecDestroy(&b);CHKERRQ(ierr); ierr = MatDestroy(&A);CHKERRQ(ierr);
ierr = KSPDestroy(&ksp);CHKERRQ(ierr);

/*
Always call PetscFinalize() before exiting a program. This routine

- finalizes the PETSc libraries as well as MPI
- provides summary and diagnostic information if certain runtime

options are chosen (e.g., -log_view).
*/
ierr = PetscFinalize();
return ierr;

}

Include Files

The C/C++ include files for PETSc should be used via statements such as

#include <petscksp.h>

where petscksp.h is the include file for the linear solver library. Each PETSc program must specify an
include file that corresponds to the highest level PETSc objects needed within the program; all of the required
lower level include files are automatically included within the higher level files. For example, petscksp.
h includes petscmat.h (matrices), petscvec.h (vectors), and petscsys.h (base PETSc file). The
PETSc include files are located in the directory ${PETSC_DIR}/include. See Fortran Include Files for a
discussion of PETSc include files in Fortran programs.

The Options Database

As shown in Simple PETSc Examples, the user can input control data at run time using the options database.
In this example the command PetscOptionsGetInt(NULL,NULL,"-n",&n,&flg); checks whether
the user has provided a command line option to set the value of n, the problem dimension. If so, the variable
n is set accordingly; otherwise, n remains unchanged. A complete description of the options database may
be found in Runtime Options.

Vectors

One creates a new parallel or sequential vector, x, of global dimension M with the commands

VecCreate(MPI_Comm comm,Vec *x);
VecSetSizes(Vec x, PetscInt m, PetscInt M);

where comm denotes the MPI communicator and m is the optional local size which may be PETSC_DECIDE.
The type of storage for the vector may be set with either calls to VecSetType() or VecSetFromOp-
tions(). Additional vectors of the same type can be formed with

VecDuplicate(Vec old,Vec *new);

The commands

1.2. Getting Started 11

PETSc Users Manual, Release 3.14.2

VecSet(Vec x,PetscScalar value);
VecSetValues(Vec x,PetscInt n,PetscInt *indices,PetscScalar *values,INSERT_VALUES);

respectively set all the components of a vector to a particular scalar value and assign a different value
to each component. More detailed information about PETSc vectors, including their basic operations,
scattering/gathering, index sets, and distributed arrays, is discussed in Chapter Vectors and Parallel Data.

Note the use of the PETSc variable type PetscScalar in this example. The PetscScalar is simply
defined to be double in C/C++ (or correspondingly double precision in Fortran) for versions of
PETSc that have not been compiled for use with complex numbers. The PetscScalar data type enables
identical code to be used when the PETSc libraries have been compiled for use with complex numbers.
Numbers discusses the use of complex numbers in PETSc programs.

Matrices

Usage of PETSc matrices and vectors is similar. The user can create a new parallel or sequential matrix, A,
which has M global rows and N global columns, with the routines

MatCreate(MPI_Comm comm,Mat *A);
MatSetSizes(Mat A,PETSC_DECIDE,PETSC_DECIDE,PetscInt M,PetscInt N);

where the matrix format can be specified at runtime via the options database. The user could alternatively
specify each processes’ number of local rows and columns using m and n.

MatSetSizes(Mat A,PetscInt m,PetscInt n,PETSC_DETERMINE,PETSC_DETERMINE);

Generally one then sets the “type” of the matrix, with, for example,

MatSetType(A,MATAIJ);

This causes the matrix A to used the compressed sparse row storage format to store the matrix entries. See
MatType for a list of all matrix types. Values can then be set with the command

MatSetValues(Mat A,PetscInt m,PetscInt *im,PetscInt n,PetscInt *in,PetscScalar␣
↪→*values,INSERT_VALUES);

After all elements have been inserted into the matrix, it must be processed with the pair of commands

MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

Matrices discusses various matrix formats as well as the details of some basic matrix manipulation routines.

Linear Solvers

After creating the matrix and vectors that define a linear system, Ax = b, the user can then use KSP to
solve the system with the following sequence of commands:

KSPCreate(MPI_Comm comm,KSP *ksp);
KSPSetOperators(KSP ksp,Mat Amat,Mat Pmat);
KSPSetFromOptions(KSP ksp);
KSPSolve(KSP ksp,Vec b,Vec x);
KSPDestroy(KSP ksp);

12 Chapter 1. Introduction to PETSc

PETSc Users Manual, Release 3.14.2

The user first creates the KSP context and sets the operators associated with the system (matrix that defines
the linear system, Amat and matrix from which the preconditioner is constructed, Pmat). The user then sets
various options for customized solution, solves the linear system, and finally destroys the KSP context. We
emphasize the command KSPSetFromOptions(), which enables the user to customize the linear solution
method at runtime by using the options database, which is discussed in Runtime Options. Through this
database, the user not only can select an iterative method and preconditioner, but also can prescribe the
convergence tolerance, set various monitoring routines, etc. (see, e.g., Profiling Programs).

KSP: Linear System Solvers describes in detail the KSP package, including the PC and KSP packages for
preconditioners and Krylov subspace methods.

Nonlinear Solvers

Most PDE problems of interest are inherently nonlinear. PETSc provides an interface to tackle the nonlin-
ear problems directly called SNES. SNES: Nonlinear Solvers describes the nonlinear solvers in detail. We
recommend most PETSc users work directly with SNES, rather than using PETSc for the linear problem
within a nonlinear solver.

Error Checking

All PETSc routines return an integer indicating whether an error has occurred during the call. The PETSc
macro CHKERRQ(ierr) checks the value of ierr and calls the PETSc error handler upon error detection.
CHKERRQ(ierr) should be used in all subroutines to enable a complete error traceback. Below, we indicate
a traceback generated by error detection within a sample PETSc program. The error occurred on line 3618
of the file ${PETSC_DIR}/src/mat/impls/aij/seq/aij.c and was caused by trying to allocate too
large an array in memory. The routine was called in the program ex3.c on line 66. See Error Checking for
details regarding error checking when using the PETSc Fortran interface.

$ cd $PETSC_DIR/src/ksp/ksp/tutorials
$ make ex3
$ mpiexec -n 1 ./ex3 -m 100000
[0]PETSC ERROR: --------------------- Error Message --------------------------------
[0]PETSC ERROR: Out of memory. This could be due to allocating
[0]PETSC ERROR: too large an object or bleeding by not properly
[0]PETSC ERROR: destroying unneeded objects.
[0]PETSC ERROR: Memory allocated 11282182704 Memory used by process 7075897344
[0]PETSC ERROR: Try running with -malloc_dump or -malloc_view for info.
[0]PETSC ERROR: Memory requested 18446744072169447424
[0]PETSC ERROR: See https://www.mcs.anl.gov/petsc/documentation/faq.html for trouble␣
↪→shooting.
[0]PETSC ERROR: Petsc Development GIT revision: v3.7.1-224-g9c9a9c5 GIT Date: 2016-
↪→05-18 22:43:00 -0500
[0]PETSC ERROR: ./ex3 on a arch-darwin-double-debug named Patricks-MacBook-Pro-2.
↪→local by patrick Mon Jun 27 18:04:03 2016
[0]PETSC ERROR: Configure options PETSC_DIR=/Users/patrick/petsc PETSC_ARCH=arch-
↪→darwin-double-debug --download-mpich --download-f2cblaslapack --with-cc=clang --
↪→with-cxx=clang++ --with-fc=gfortran --with-debugging=1 --with-precision=double --
↪→with-scalar-type=real --with-viennacl=0 --download-c2html -download-sowing
[0]PETSC ERROR: #1 MatSeqAIJSetPreallocation_SeqAIJ() line 3618 in /Users/patrick/
↪→petsc/src/mat/impls/aij/seq/aij.c
[0]PETSC ERROR: #2 PetscTrMallocDefault() line 188 in /Users/patrick/petsc/src/sys/
↪→memory/mtr.c
[0]PETSC ERROR: #3 MatSeqAIJSetPreallocation_SeqAIJ() line 3618 in /Users/patrick/
↪→petsc/src/mat/impls/aij/seq/aij.c
[0]PETSC ERROR: #4 MatSeqAIJSetPreallocation() line 3562 in /Users/patrick/petsc/src/
↪→mat/impls/aij/seq/aij.c (continues on next page)

1.2. Getting Started 13

PETSc Users Manual, Release 3.14.2

(continued from previous page)
[0]PETSC ERROR: #5 main() line 66 in /Users/patrick/petsc/src/ksp/ksp/tutorials/ex3.c
[0]PETSC ERROR: PETSc Option Table entries:
[0]PETSC ERROR: -m 100000
[0]PETSC ERROR: ----------------End of Error Message ------- send entire error␣
↪→message to petsc-maint@mcs.anl.gov----------

When running the debug version of the PETSc libraries, it does a great deal of checking for memory cor-
ruption (writing outside of array bounds etc). The macro CHKMEMQ can be called anywhere in the code to
check the current status of the memory for corruption. By putting several (or many) of these macros into
your code you can usually easily track down in what small segment of your code the corruption has occured.
One can also use Valgrind to track down memory errors; see the FAQ.

Parallel Programming

Since PETSc uses the message-passing model for parallel programming and employs MPI for all interprocessor
communication, the user is free to employ MPI routines as needed throughout an application code. However,
by default the user is shielded from many of the details of message passing within PETSc, since these are
hidden within parallel objects, such as vectors, matrices, and solvers. In addition, PETSc provides tools
such as generalized vector scatters/gathers to assist in the management of parallel data.

Recall that the user must specify a communicator upon creation of any PETSc object (such as a vector,
matrix, or solver) to indicate the processors over which the object is to be distributed. For example, as
mentioned above, some commands for matrix, vector, and linear solver creation are:

MatCreate(MPI_Comm comm,Mat *A);
VecCreate(MPI_Comm comm,Vec *x);
KSPCreate(MPI_Comm comm,KSP *ksp);

The creation routines are collective over all processors in the communicator; thus, all processors in the
communicator must call the creation routine. In addition, if a sequence of collective routines is being used,
they must be called in the same order on each processor.

The next example, given below, illustrates the solution of a linear system in parallel. This code, correspond-
ing to KSP Tutorial ex2 <https://www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/tutorials/ex2.c.html>,
handles the two-dimensional Laplacian discretized with finite differences, where the linear system is again
solved with KSP. The code performs the same tasks as the sequential version within Simple PETSc Exam-
ples. Note that the user interface for initiating the program, creating vectors and matrices, and solving the
linear system is exactly the same for the uniprocessor and multiprocessor examples. The primary difference
between the examples in Simple PETSc Examples and here is that each processor forms only its local part
of the matrix and vectors in the parallel case.

Listing: src/ksp/ksp/tutorials/ex2.c

static char help[] = "Solves a linear system in parallel with KSP.\n\
Input parameters include:\n\
-view_exact_sol : write exact solution vector to stdout\n\
-m <mesh_x> : number of mesh points in x-direction\n\
-n <mesh_y> : number of mesh points in y-direction\n\n";

/*T
Concepts: KSP^basic parallel example;
Concepts: KSP^Laplacian, 2d

(continues on next page)

14 Chapter 1. Introduction to PETSc

https://www.mcs.anl.gov/petsc/documentation/faq.html

PETSc Users Manual, Release 3.14.2

(continued from previous page)
Concepts: Laplacian, 2d
Processors: n

T*/

/*
Include "petscksp.h" so that we can use KSP solvers.

*/
#include <petscksp.h>

int main(int argc,char **args)
{
Vec x,b,u; /* approx solution, RHS, exact solution */
Mat A; /* linear system matrix */
KSP ksp; /* linear solver context */
PetscReal norm; /* norm of solution error */
PetscInt i,j,Ii,J,Istart,Iend,m = 8,n = 7,its;
PetscErrorCode ierr;
PetscBool flg;
PetscScalar v;

ierr = PetscInitialize(&argc,&args,(char*)0,help);if (ierr) return ierr;
ierr = PetscOptionsGetInt(NULL,NULL,"-m",&m,NULL);CHKERRQ(ierr);
ierr = PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);CHKERRQ(ierr);
/* -

Compute the matrix and right-hand-side vector that define
the linear system, Ax = b.

- */
/*

Create parallel matrix, specifying only its global dimensions.
When using MatCreate(), the matrix format can be specified at
runtime. Also, the parallel partitioning of the matrix is
determined by PETSc at runtime.

Performance tuning note: For problems of substantial size,
preallocation of matrix memory is crucial for attaining good
performance. See the matrix chapter of the users manual for details.

*/
ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,m*n,m*n);CHKERRQ(ierr);
ierr = MatSetFromOptions(A);CHKERRQ(ierr);
ierr = MatMPIAIJSetPreallocation(A,5,NULL,5,NULL);CHKERRQ(ierr);
ierr = MatSeqAIJSetPreallocation(A,5,NULL);CHKERRQ(ierr);
ierr = MatSeqSBAIJSetPreallocation(A,1,5,NULL);CHKERRQ(ierr);
ierr = MatMPISBAIJSetPreallocation(A,1,5,NULL,5,NULL);CHKERRQ(ierr);
ierr = MatMPISELLSetPreallocation(A,5,NULL,5,NULL);CHKERRQ(ierr);
ierr = MatSeqSELLSetPreallocation(A,5,NULL);CHKERRQ(ierr);

/*
Currently, all PETSc parallel matrix formats are partitioned by
contiguous chunks of rows across the processors. Determine which
rows of the matrix are locally owned.

*/
ierr = MatGetOwnershipRange(A,&Istart,&Iend);CHKERRQ(ierr);

/*
Set matrix elements for the 2-D, five-point stencil in parallel.

(continues on next page)

1.2. Getting Started 15

PETSc Users Manual, Release 3.14.2

(continued from previous page)
- Each processor needs to insert only elements that it owns

locally (but any non-local elements will be sent to the
appropriate processor during matrix assembly).

- Always specify global rows and columns of matrix entries.

Note: this uses the less common natural ordering that orders first
all the unknowns for x = h then for x = 2h etc; Hence you see J = Ii +- n
instead of J = I +- m as you might expect. The more standard ordering
would first do all variables for y = h, then y = 2h etc.

*/
for (Ii=Istart; Ii<Iend; Ii++) {

v = -1.0; i = Ii/n; j = Ii - i*n;
if (i>0) {J = Ii - n; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);

↪→CHKERRQ(ierr);}
if (i<m-1) {J = Ii + n; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);

↪→CHKERRQ(ierr);}
if (j>0) {J = Ii - 1; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);

↪→CHKERRQ(ierr);}
if (j<n-1) {J = Ii + 1; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);

↪→CHKERRQ(ierr);}
v = 4.0; ierr = MatSetValues(A,1,&Ii,1,&Ii,&v,ADD_VALUES);CHKERRQ(ierr);

}

/*
Assemble matrix, using the 2-step process:

MatAssemblyBegin(), MatAssemblyEnd()
Computations can be done while messages are in transition
by placing code between these two statements.

*/
ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

/* A is symmetric. Set symmetric flag to enable ICC/Cholesky preconditioner */
ierr = MatSetOption(A,MAT_SYMMETRIC,PETSC_TRUE);CHKERRQ(ierr);

/*
Create parallel vectors.
- We form 1 vector from scratch and then duplicate as needed.
- When using VecCreate(), VecSetSizes and VecSetFromOptions()

in this example, we specify only the
vector's global dimension; the parallel partitioning is determined
at runtime.

- When solving a linear system, the vectors and matrices MUST
be partitioned accordingly. PETSc automatically generates
appropriately partitioned matrices and vectors when MatCreate()
and VecCreate() are used with the same communicator.

- The user can alternatively specify the local vector and matrix
dimensions when more sophisticated partitioning is needed
(replacing the PETSC_DECIDE argument in the VecSetSizes() statement
below).

*/
ierr = VecCreate(PETSC_COMM_WORLD,&u);CHKERRQ(ierr);
ierr = VecSetSizes(u,PETSC_DECIDE,m*n);CHKERRQ(ierr);
ierr = VecSetFromOptions(u);CHKERRQ(ierr);
ierr = VecDuplicate(u,&b);CHKERRQ(ierr);

(continues on next page)

16 Chapter 1. Introduction to PETSc

PETSc Users Manual, Release 3.14.2

(continued from previous page)
ierr = VecDuplicate(b,&x);CHKERRQ(ierr);

/*
Set exact solution; then compute right-hand-side vector.
By default we use an exact solution of a vector with all
elements of 1.0;

*/
ierr = VecSet(u,1.0);CHKERRQ(ierr);
ierr = MatMult(A,u,b);CHKERRQ(ierr);

/*
View the exact solution vector if desired

*/
flg = PETSC_FALSE;
ierr = PetscOptionsGetBool(NULL,NULL,"-view_exact_sol",&flg,NULL);CHKERRQ(ierr);
if (flg) {ierr = VecView(u,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);}

/* -
Create the linear solver and set various options

- */
ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);

/*
Set operators. Here the matrix that defines the linear system
also serves as the preconditioning matrix.

*/
ierr = KSPSetOperators(ksp,A,A);CHKERRQ(ierr);

/*
Set linear solver defaults for this problem (optional).
- By extracting the KSP and PC contexts from the KSP context,

we can then directly call any KSP and PC routines to set
various options.

- The following two statements are optional; all of these
parameters could alternatively be specified at runtime via
KSPSetFromOptions(). All of these defaults can be
overridden at runtime, as indicated below.

*/
ierr = KSPSetTolerances(ksp,1.e-2/((m+1)*(n+1)),1.e-50,PETSC_DEFAULT,PETSC_DEFAULT);

↪→CHKERRQ(ierr);

/*
Set runtime options, e.g.,

-ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>
These options will override those specified above as long as
KSPSetFromOptions() is called _after_ any other customization
routines.

*/
ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);

/* -
Solve the linear system

- */

ierr = KSPSolve(ksp,b,x);CHKERRQ(ierr);

(continues on next page)

1.2. Getting Started 17

PETSc Users Manual, Release 3.14.2

(continued from previous page)
/* -

Check the solution and clean up
- */

ierr = VecAXPY(x,-1.0,u);CHKERRQ(ierr);
ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);
ierr = KSPGetIterationNumber(ksp,&its);CHKERRQ(ierr);

/*
Print convergence information. PetscPrintf() produces a single
print statement from all processes that share a communicator.
An alternative is PetscFPrintf(), which prints to a file.

*/
ierr = PetscPrintf(PETSC_COMM_WORLD,"Norm of error %g iterations %D\n",(double)norm,

↪→its);CHKERRQ(ierr);

/*
Free work space. All PETSc objects should be destroyed when they
are no longer needed.

*/
ierr = KSPDestroy(&ksp);CHKERRQ(ierr);
ierr = VecDestroy(&u);CHKERRQ(ierr); ierr = VecDestroy(&x);CHKERRQ(ierr);
ierr = VecDestroy(&b);CHKERRQ(ierr); ierr = MatDestroy(&A);CHKERRQ(ierr);

/*
Always call PetscFinalize() before exiting a program. This routine

- finalizes the PETSc libraries as well as MPI
- provides summary and diagnostic information if certain runtime

options are chosen (e.g., -log_view).
*/
ierr = PetscFinalize();
return ierr;

}

18 Chapter 1. Introduction to PETSc

PETSc Users Manual, Release 3.14.2

Compiling and Running Programs

The output below illustrates compiling and running a PETSc program using MPICH on an OS X laptop.
Note that different machines will have compilation commands as determined by the configuration process.
See Writing Application Codes with PETSc for a discussion about how to compile your PETSc programs.
Users who are experiencing difficulties linking PETSc programs should refer to the FAQ on the PETSc
website https://www.mcs.anl.gov/petsc or given in the file $PETSC_DIR/docs/faq.html.

$ cd $PETSC_DIR/src/ksp/ksp/tutorials
$ make ex2
/Users/patrick/petsc/arch-darwin-double-debug/bin/mpicc -o ex2.o -c -Wall -Wwrite-
↪→strings -Wno-strict-aliasing -Wno-unknown-pragmas -Qunused-arguments -
↪→fvisibility=hidden -g3 -I/Users/patrick/petsc/include -I/Users/patrick/petsc/arch-
↪→darwin-double-debug/include -I/opt/X11/include -I/opt/local/include `pwd`/ex2.c
/Users/patrick/petsc/arch-darwin-double-debug/bin/mpicc -Wl,-multiply_defined,
↪→suppress -Wl,-multiply_defined -Wl,suppress -Wl,-commons,use_dylibs -Wl,-search_
↪→paths_first -Wl,-multiply_defined,suppress -Wl,-multiply_defined -Wl,suppress -Wl,-
↪→commons,use_dylibs -Wl,-search_paths_first -Wall -Wwrite-strings -Wno-strict-
↪→aliasing -Wno-unknown-pragmas -Qunused-arguments -fvisibility=hidden -g3 -o ex2␣
↪→ex2.o -Wl,-rpath,/Users/patrick/petsc/arch-darwin-double-debug/lib -L/Users/
↪→patrick/petsc/arch-darwin-double-debug/lib -lpetsc -Wl,-rpath,/Users/patrick/petsc/
↪→arch-darwin-double-debug/lib -lf2clapack -lf2cblas -Wl,-rpath,/opt/X11/lib -L/opt/
↪→X11/lib -lX11 -lssl -lcrypto -Wl,-rpath,/Applications/Xcode.app/Contents/Developer/
↪→Toolchains/XcodeDefault.xctoolchain/usr/lib/clang/7.0.2/lib/darwin -L/Applications/
↪→Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/lib/clang/7.0.
↪→2/lib/darwin -lmpifort -lgfortran -Wl,-rpath,/opt/local/lib/gcc5/gcc/x86_64-apple-
↪→darwin14/5.3.0 -L/opt/local/lib/gcc5/gcc/x86_64-apple-darwin14/5.3.0 -Wl,-rpath,/
↪→opt/local/lib/gcc5 -L/opt/local/lib/gcc5 -lgfortran -lgcc_ext.10.5 -lquadmath -lm -
↪→lclang_rt.osx -lmpicxx -lc++ -Wl,-rpath,/Applications/Xcode.app/Contents/Developer/
↪→Toolchains/XcodeDefault.xctoolchain/usr/bin/../lib/clang/7.0.2/lib/darwin -L/
↪→Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/
↪→bin/../lib/clang/7.0.2/lib/darwin -lclang_rt.osx -Wl,-rpath,/Users/patrick/petsc/
↪→arch-darwin-double-debug/lib -L/Users/patrick/petsc/arch-darwin-double-debug/lib -
↪→ldl -lmpi -lpmpi -lSystem -Wl,-rpath,/Applications/Xcode.app/Contents/Developer/
↪→Toolchains/XcodeDefault.xctoolchain/usr/bin/../lib/clang/7.0.2/lib/darwin -L/
↪→Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/
↪→bin/../lib/clang/7.0.2/lib/darwin -lclang_rt.osx -ldl
/bin/rm -f ex2.o
$ $PETSC_DIR/lib/petsc/bin/petscmpiexec -n 1 ./ex2
Norm of error 0.000156044 iterations 6
$ $PETSC_DIR/lib/petsc/bin/petscmpiexec -n 2 ./ex2
Norm of error 0.000411674 iterations 7

1.2.5 Profiling Programs

The option -log_view activates printing of a performance summary, including times, floating point op-
eration (flop) rates, and message-passing activity. Profiling provides details about profiling, including in-
terpretation of the output data below. This particular example involves the solution of a linear system on
one processor using GMRES and ILU. The low floating point operation (flop) rates in this example are due
to the fact that the code solved a tiny system. We include this example merely to demonstrate the ease of
extracting performance information.

$ $PETSC_DIR/lib/petsc/bin/petscmpiexec -n 1 ./ex1 -n 1000 -pc_type ilu -ksp_type␣
↪→gmres -ksp_rtol 1.e-7 -log_view
...

(continues on next page)

1.2. Getting Started 19

https://www.mcs.anl.gov/petsc

PETSc Users Manual, Release 3.14.2

(continued from previous page)
--
↪→----------------------------------
Event Count Time (sec) Flops ---␣
↪→Global --- --- Stage ---- Total

Max Ratio Max Ratio Max Ratio Mess AvgLen Reduct %T
↪→%F %M %L %R %T %F %M %L %R Mflop/s
--
↪→----------------------------------

--- Event Stage 0: Main Stage

VecMDot 1 1.0 3.2830e-06 1.0 2.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 0 ␣
↪→5 0 0 0 0 5 0 0 0 609
VecNorm 3 1.0 4.4550e-06 1.0 6.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 0␣
↪→14 0 0 0 0 14 0 0 0 1346
VecScale 2 1.0 4.0110e-06 1.0 2.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 0 ␣
↪→5 0 0 0 0 5 0 0 0 499
VecCopy 1 1.0 3.2280e-06 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 ␣
↪→0 0 0 0 0 0 0 0 0 0
VecSet 11 1.0 2.5537e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 2 ␣
↪→0 0 0 0 2 0 0 0 0 0
VecAXPY 2 1.0 2.0930e-06 1.0 4.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 0␣
↪→10 0 0 0 0 10 0 0 0 1911
VecMAXPY 2 1.0 1.1280e-06 1.0 4.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 0␣
↪→10 0 0 0 0 10 0 0 0 3546
VecNormalize 2 1.0 9.3970e-06 1.0 6.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 1␣
↪→14 0 0 0 1 14 0 0 0 638
MatMult 2 1.0 1.1177e-05 1.0 9.99e+03 1.0 0.0e+00 0.0e+00 0.0e+00 1␣
↪→24 0 0 0 1 24 0 0 0 894
MatSolve 2 1.0 1.9933e-05 1.0 9.99e+03 1.0 0.0e+00 0.0e+00 0.0e+00 1␣
↪→24 0 0 0 1 24 0 0 0 501
MatLUFactorNum 1 1.0 3.5081e-05 1.0 4.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 2␣
↪→10 0 0 0 2 10 0 0 0 114
MatILUFactorSym 1 1.0 4.4259e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 3 ␣
↪→0 0 0 0 3 0 0 0 0 0
MatAssemblyBegin 1 1.0 8.2015e-08 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 ␣
↪→0 0 0 0 0 0 0 0 0 0
MatAssemblyEnd 1 1.0 3.3536e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 2 ␣
↪→0 0 0 0 2 0 0 0 0 0
MatGetRowIJ 1 1.0 1.5960e-06 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 ␣
↪→0 0 0 0 0 0 0 0 0 0
MatGetOrdering 1 1.0 3.9791e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 3 ␣
↪→0 0 0 0 3 0 0 0 0 0
MatView 2 1.0 6.7909e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 5 ␣
↪→0 0 0 0 5 0 0 0 0 0
KSPGMRESOrthog 1 1.0 7.5970e-06 1.0 4.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 1␣
↪→10 0 0 0 1 10 0 0 0 526
KSPSetUp 1 1.0 3.4424e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 2 ␣
↪→0 0 0 0 2 0 0 0 0 0
KSPSolve 1 1.0 2.7264e-04 1.0 3.30e+04 1.0 0.0e+00 0.0e+00 0.0e+00 19␣
↪→79 0 0 0 19 79 0 0 0 121
PCSetUp 1 1.0 1.5234e-04 1.0 4.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 11␣
↪→10 0 0 0 11 10 0 0 0 26
PCApply 2 1.0 2.1022e-05 1.0 9.99e+03 1.0 0.0e+00 0.0e+00 0.0e+00 1␣
↪→24 0 0 0 1 24 0 0 0 475
--
↪→----------------------------------

(continues on next page)

20 Chapter 1. Introduction to PETSc

PETSc Users Manual, Release 3.14.2

(continued from previous page)

Memory usage is given in bytes:

Object Type Creations Destructions Memory Descendants' Mem.
Reports information only for process 0.

--- Event Stage 0: Main Stage

Vector 8 8 76224 0.
Matrix 2 2 134212 0.

Krylov Solver 1 1 18400 0.
Preconditioner 1 1 1032 0.

Index Set 3 3 10328 0.
Viewer 1 0 0 0.

==
...

1.2.6 Writing Application Codes with PETSc

The examples throughout the library demonstrate the software usage and can serve as templates for de-
veloping custom applications. We suggest that new PETSc users examine programs in the directories
${PETSC_DIR}/src/<library>/tutorials where <library> denotes any of the PETSc libraries
(listed in the following section), such as SNES or KSP or TS. The manual pages located at ${PETSC_DIR}/
docs/index.htm or https://www.mcs.anl.gov/petsc/documentation/ provide links (organized by both
routine names and concepts) to the tutorial examples.

To write a new application program using PETSc, we suggest the following procedure:

1. Install and test PETSc according to the instructions at the PETSc web site.

2. Make a working directory for your source code: for example, mkdir $HOME/application

3. Change to that working directory; for example,cd $HOME/application

4. Copy one of the examples in the directory that corresponds to the class of problem of interest into
your working directory, for example, cp $PETSC_DIR/src/snes/tutorials/ex19.c ex19.c

5. Copy $PETSC_DIR/share/petsc/Makefile.user to your working directory, for example, cp
$PETSC_DIR/share/petsc/Makefile.user Makefile

6. Compile and run the example program, for example, make ex19; ./ex19

7. Use the example program as a starting point for developing a custom code.

We highly recommend against the following since it requires changing your makefile for each new configura-
tion/computing system but if you do not wish to include any PETSc utilities in your makefile, you can use
the following commands in the PETSc root directory to get the information needed by your makefile:

make getlinklibs getincludedirs getcflags getcxxflags getfortranflags getccompiler␣
↪→getfortrancompiler getcxxcompiler

All the libraries listed need to be linked into your executable and the include directories and flags need to
be passed to the compiler. Usually this is done with CFLAGS=<list of -I and other flags> and
FFLAGS=<list of -I and other flags> in your makefile.

1.2. Getting Started 21

https://www.mcs.anl.gov/petsc/documentation/

PETSc Users Manual, Release 3.14.2

1.2.7 Citing PETSc

If you use the TS component of PETSc please cite the following:

@article{abhyankar2018petsc,
title={PETSc/TS: A Modern Scalable ODE/DAE Solver Library},
author={Abhyankar, Shrirang and Brown, Jed and Constantinescu, Emil M and Ghosh,␣

↪→Debojyoti and Smith, Barry F and Zhang, Hong},
journal={arXiv preprint arXiv:1806.01437},
year={2018}

}

When citing PETSc in a publication please cite the following:

@Misc{petsc-web-page,
Author = "Satish Balay and Shrirang Abhyankar and Mark~F. Adams and Jed Brown
and Peter Brune and Kris Buschelman and Lisandro Dalcin and Alp Dener and Victor␣

↪→Eijkhout
and William~D. Gropp and Dinesh Kaushik and Matthew~G. Knepley and Dave~A. May
and Lois Curfman McInnes and Richard Tran Mills and Todd Munson and Karl Rupp
and Patrick Sanan and Barry~F. Smith and Stefano Zampini and Hong Zhang and Hong␣

↪→Zhang",
Title = "{PETS}c {W}eb page",
Note = "https://www.mcs.anl.gov/petsc",
Year = "2020"}

@TechReport{petsc-user-ref,
Author = "Satish Balay and Shrirang Abhyankar and Mark~F. Adams and Jed Brown
and Peter Brune and Kris Buschelman and Lisandro Dalcin and Alp Dener and Victor␣

↪→Eijkhout
and William~D. Gropp and Dinesh Kaushik and Matthew~G. Knepley and Dave~A. May
and Lois Curfman McInnes and Richard Tran Mills and Todd Munson and Karl Rupp
and Patrick Sanan and Barry~F. Smith and Stefano Zampini and Hong Zhang and Hong␣

↪→Zhang",
Title = "{PETS}c Users Manual",
Number = "ANL-95/11 - Revision 3.13",
Institution = "Argonne National Laboratory",
Year = "2020"}

@InProceedings{petsc-efficient,
Author = "Satish Balay and William D. Gropp and Lois C. McInnes and Barry F.␣

↪→Smith",
Title = "Efficient Management of Parallelism in Object Oriented

Numerical Software Libraries",
Booktitle = "Modern Software Tools in Scientific Computing",
Editor = "E. Arge and A. M. Bruaset and H. P. Langtangen",
Pages = "163--202",
Publisher = "Birkhauser Press",
Year = "1997"}

22 Chapter 1. Introduction to PETSc

PETSc Users Manual, Release 3.14.2

1.2.8 Directory Structure

We conclude this introduction with an overview of the organization of the PETSc software. The root
directory of PETSc contains the following directories:

• docs (only in the tarball distribution of PETSc; not the git repository) - All documentation for
PETSc. The files manual.pdf contains the hyperlinked users manual, suitable for printing or on-
screen viewering. Includes the subdirectory - manualpages (on-line manual pages).

• conf - Base PETSc configuration files that define the standard make variables and rules used by
PETSc

• include - All include files for PETSc that are visible to the user.

• include/petsc/finclude - PETSc include files for Fortran programmers using the .F suffix (rec-
ommended).

• include/petsc/private - Private PETSc include files that should not need to be used by appli-
cation programmers.

• share - Some small test matrices in data files

• src - The source code for all PETSc libraries, which currently includes

– vec - vectors,

∗ is - index sets,

– mat - matrices,

– ksp - complete linear equations solvers,

∗ ksp - Krylov subspace accelerators,

∗ pc - preconditioners,

– snes - nonlinear solvers

– ts - ODE solvers and timestepping,

– dm - data management between meshes and solvers, vectors, and matrices,

– sys - general system-related routines,

∗ logging - PETSc logging and profiling routines,

∗ classes - low-level classes

· draw - simple graphics,

· viewer - mechanism for printing and visualizing PETSc objects,

· bag - mechanism for saving and loading from disk user data stored in C structs.

· random - random number generators.

Each PETSc source code library directory has the following subdirectories:

• tutorials - Programs designed to teach users about PETSc. These codes can serve as tem-
plates for the design of custom applications.

• tests - Programs designed for thorough testing of PETSc. As such, these codes are not in-
tended for examination by users.

• interface - The calling sequences for the abstract interface to the component. Code here does not
know about particular implementations.

• impls - Source code for one or more implementations.

1.2. Getting Started 23

PETSc Users Manual, Release 3.14.2

• utils - Utility routines. Source here may know about the implementations, but ideally will not know
about implementations for other components.

24 Chapter 1. Introduction to PETSc

CHAPTER

TWO

PROGRAMMING WITH PETSC

2.1 Vectors and Parallel Data

The vector (denoted by Vec) is one of the simplest PETSc objects. Vectors are used to store discrete PDE
solutions, right-hand sides for linear systems, etc. This chapter is organized as follows:

• (Vec) Creating and Assembling Vectors and Basic Vector Operations - basic usage of vectors

• Section Indexing and Ordering - management of the various numberings of degrees of freedom, vertices,
cells, etc.

– (AO) Mapping between different global numberings

– (ISLocalToGlobalMapping) Mapping between local and global numberings

• (DM) Structured Grids Using Distributed Arrays - management of grids

• (IS, VecScatter) Vectors Related to Unstructured Grids - management of vectors related to unstruc-
tured grids

2.1.1 Creating and Assembling Vectors

PETSc currently provides two basic vector types: sequential and parallel (MPI-based). To create a sequential
vector with m components, one can use the command

VecCreateSeq(PETSC_COMM_SELF,PetscInt m,Vec *x);

To create a parallel vector one can either specify the number of components that will be stored on each
process or let PETSc decide. The command

VecCreateMPI(MPI_Comm comm,PetscInt m,PetscInt M,Vec *x);

creates a vector distributed over all processes in the communicator, comm, where m indicates the number of
components to store on the local process, and M is the total number of vector components. Either the local
or global dimension, but not both, can be set to PETSC_DECIDE or PETSC_DETERMINE, respectively, to
indicate that PETSc should decide or determine it. More generally, one can use the routines

VecCreate(MPI_Comm comm,Vec *v);
VecSetSizes(Vec v, PetscInt m, PetscInt M);
VecSetFromOptions(Vec v);

which automatically generates the appropriate vector type (sequential or parallel) over all processes in comm.
The option -vec_type mpi can be used in conjunction with VecCreate() and VecSetFromOptions()
to specify the use of MPI vectors even for the uniprocessor case.

25

PETSc Users Manual, Release 3.14.2

We emphasize that all processes in comm must call the vector creation routines, since these routines are
collective over all processes in the communicator. If you are not familiar with MPI communicators, see the
discussion in Writing PETSc Programs on page . In addition, if a sequence of VecCreateXXX() routines
is used, they must be called in the same order on each process in the communicator.

One can assign a single value to all components of a vector with the command

VecSet(Vec x,PetscScalar value);

Assigning values to individual components of the vector is more complicated, in order to make it possible to
write efficient parallel code. Assigning a set of components is a two-step process: one first calls

VecSetValues(Vec x,PetscInt n,PetscInt *indices,PetscScalar *values,INSERT_VALUES);

any number of times on any or all of the processes. The argument n gives the number of components
being set in this insertion. The integer array indices contains the global component indices, and values
is the array of values to be inserted. Any process can set any components of the vector; PETSc ensures
that they are automatically stored in the correct location. Once all of the values have been inserted with
VecSetValues(), one must call

VecAssemblyBegin(Vec x);

followed by

VecAssemblyEnd(Vec x);

to perform any needed message passing of nonlocal components. In order to allow the overlap of communi-
cation and calculation, the user’s code can perform any series of other actions between these two calls while
the messages are in transition.

Example usage of VecSetValues() may be found in $PETSC_DIR/src/vec/vec/tutorials/ex2.c
or ex2f.F.

Often, rather than inserting elements in a vector, one may wish to add values. This process is also done
with the command

VecSetValues(Vec x,PetscInt n,PetscInt *indices, PetscScalar *values,ADD_VALUES);

Again one must call the assembly routines VecAssemblyBegin() and VecAssemblyEnd() after all of
the values have been added. Note that addition and insertion calls to VecSetValues() cannot be mixed.
Instead, one must add and insert vector elements in phases, with intervening calls to the assembly routines.
This phased assembly procedure overcomes the nondeterministic behavior that would occur if two different
processes generated values for the same location, with one process adding while the other is inserting its value.
(In this case the addition and insertion actions could be performed in either order, thus resulting in different
values at the particular location. Since PETSc does not allow the simultaneous use of INSERT_VALUES
and ADD_VALUES this nondeterministic behavior will not occur in PETSc.)

You can call VecGetValues() to pull local values from a vector (but not off-process values), an alternative
method for extracting some components of a vector are the vector scatter routines. See Scatters and Gathers
for details; see also below for VecGetArray().

One can examine a vector with the command

VecView(Vec x,PetscViewer v);

To print the vector to the screen, one can use the viewer PETSC_VIEWER_STDOUT_WORLD, which ensures
that parallel vectors are printed correctly to stdout. To display the vector in an X-window, one can use
the default X-windows viewer PETSC_VIEWER_DRAW_WORLD, or one can create a viewer with the routine

26 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

PetscViewerDrawOpenX(). A variety of viewers are discussed further in Viewers: Looking at PETSc
Objects.

To create a new vector of the same format as an existing vector, one uses the command

VecDuplicate(Vec old,Vec *new);

To create several new vectors of the same format as an existing vector, one uses the command

VecDuplicateVecs(Vec old,PetscInt n,Vec **new);

This routine creates an array of pointers to vectors. The two routines are very useful because they allow
one to write library code that does not depend on the particular format of the vectors being used. Instead,
the subroutines can automatically correctly create work vectors based on the specified existing vector. As
discussed in Duplicating Multiple Vectors, the Fortran interface for VecDuplicateVecs() differs slightly.

When a vector is no longer needed, it should be destroyed with the command

VecDestroy(Vec *x);

To destroy an array of vectors, use the command

VecDestroyVecs(PetscInt n,Vec **vecs);

Note that the Fortran interface for VecDestroyVecs() differs slightly, as described in Duplicating Multiple
Vectors.

It is also possible to create vectors that use an array provided by the user, rather than having PETSc
internally allocate the array space. Such vectors can be created with the routines

VecCreateSeqWithArray(PETSC_COMM_SELF,PetscInt bs,PetscInt n,PetscScalar *array,Vec␣
↪→*V);

and

VecCreateMPIWithArray(MPI_Comm comm,PetscInt bs,PetscInt n,PetscInt N,PetscScalar␣
↪→*array,Vec *vv);

Note that here one must provide the value n; it cannot be PETSC_DECIDE and the user is responsible for
providing enough space in the array; n*sizeof(PetscScalar).

2.1. Vectors and Parallel Data 27

PETSc Users Manual, Release 3.14.2

2.1.2 Basic Vector Operations

Table 2.1: PETSc Vector Operations
Function Name Operation
VecAXPY(Vec y,PetscScalar a,Vec x); y = y + a ∗ x
VecAYPX(Vec y,PetscScalar a,Vec x); y = x+ a ∗ y
VecWAXPY(Vec w,PetscScalar a,Vec x,Vec y); w = a ∗ x+ y
VecAXPBY(Vec y,PetscScalar a,PetscScalar b,Vec x); y = a ∗ x+ b ∗ y
VecScale(Vec x, PetscScalar a); x = a ∗ x
VecDot(Vec x, Vec y, PetscScalar *r); r = x̄T ∗ y
VecTDot(Vec x, Vec y, PetscScalar *r); r = x′ ∗ y
VecNorm(Vec x, NormType type, PetscReal *r); r = ||x||type
VecSum(Vec x, PetscScalar *r); r =

∑
xi

VecCopy(Vec x, Vec y); y = x
VecSwap(Vec x, Vec y); y = x while x = y
VecPointwiseMult(Vec w,Vec x,Vec y); wi = xi ∗ yi
VecPointwiseDivide(Vec w,Vec x,Vec y); wi = xi/yi
VecMDot(Vec x,PetscInt n,Vec y[],PetscScalar *r); r[i] = x̄T ∗ y[i]
VecMTDot(Vec x,PetscInt n,Vec y[],PetscScalar *r); r[i] = xT ∗ y[i]
VecMAXPY(Vec y,PetscInt n, PetscScalar *a, Vec x[]); y = y +

∑
i ai ∗ x[i]

VecMax(Vec x, PetscInt *idx, PetscReal *r); r = maxxi

VecMin(Vec x, PetscInt *idx, PetscReal *r); r = minxi

VecAbs(Vec x); xi = |xi|
VecReciprocal(Vec x); xi = 1/xi

VecShift(Vec x,PetscScalar s); xi = s+ xi

VecSet(Vec x,PetscScalar alpha); xi = α

As listed in the table, we have chosen certain basic vector operations to support within the PETSc vector
library. These operations were selected because they often arise in application codes. The NormType
argument to VecNorm() is one of NORM_1, NORM_2, or NORM_INFINITY. The 1-norm is

∑
i |xi|, the

2-norm is (
∑

i x
2
i)

1/2 and the infinity norm is maxi |xi|.

For parallel vectors that are distributed across the processes by ranges, it is possible to determine a process’s
local range with the routine

VecGetOwnershipRange(Vec vec,PetscInt *low,PetscInt *high);

The argument low indicates the first component owned by the local process, while high specifies one more
than the last owned by the local process. This command is useful, for instance, in assembling parallel vectors.

On occasion, the user needs to access the actual elements of the vector. The routine VecGetArray()
returns a pointer to the elements local to the process:

VecGetArray(Vec v,PetscScalar **array);

When access to the array is no longer needed, the user should call

VecRestoreArray(Vec v, PetscScalar **array);

If the values do not need to be modified, the routines VecGetArrayRead() and VecRestoreAr-
rayRead() provide read-only access and should be used instead.

VecGetArrayRead(Vec v, const PetscScalar **array);
VecRestoreArrayRead(Vec v, const PetscScalar **array);

28 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

Minor differences exist in the Fortran interface for VecGetArray() and VecRestoreArray(), as dis-
cussed in Array Arguments. It is important to note that VecGetArray() and VecRestoreArray()
do not copy the vector elements; they merely give users direct access to the vector elements. Thus, these
routines require essentially no time to call and can be used efficiently.

The number of elements stored locally can be accessed with

VecGetLocalSize(Vec v,PetscInt *size);

The global vector length can be determined by

VecGetSize(Vec v,PetscInt *size);

In addition to VecDot() and VecMDot() and VecNorm(), PETSc provides split phase versions of these
that allow several independent inner products and/or norms to share the same communication (thus im-
proving parallel efficiency). For example, one may have code such as

VecDot(Vec x,Vec y,PetscScalar *dot);
VecMDot(Vec x,PetscInt nv, Vec y[],PetscScalar *dot);
VecNorm(Vec x,NormType NORM_2,PetscReal *norm2);
VecNorm(Vec x,NormType NORM_1,PetscReal *norm1);

This code works fine, but it performs three separate parallel communication operations. Instead, one can
write

VecDotBegin(Vec x,Vec y,PetscScalar *dot);
VecMDotBegin(Vec x, PetscInt nv,Vec y[],PetscScalar *dot);
VecNormBegin(Vec x,NormType NORM_2,PetscReal *norm2);
VecNormBegin(Vec x,NormType NORM_1,PetscReal *norm1);
VecDotEnd(Vec x,Vec y,PetscScalar *dot);
VecMDotEnd(Vec x, PetscInt nv,Vec y[],PetscScalar *dot);
VecNormEnd(Vec x,NormType NORM_2,PetscReal *norm2);
VecNormEnd(Vec x,NormType NORM_1,PetscReal *norm1);

With this code, the communication is delayed until the first call to VecxxxEnd() at which a single MPI
reduction is used to communicate all the required values. It is required that the calls to the VecxxxEnd()
are performed in the same order as the calls to the VecxxxBegin(); however, if you mistakenly make the
calls in the wrong order, PETSc will generate an error informing you of this. There are additional routines
VecTDotBegin() and VecTDotEnd(), VecMTDotBegin(), VecMTDotEnd().

Note: these routines use only MPI-1 functionality; they do not allow you to overlap computation and
communication (assuming no threads are spawned within a MPI process). Once MPI-2 implementations are
more common we’ll improve these routines to allow overlap of inner product and norm calculations with
other calculations. Also currently these routines only work for the PETSc built in vector types.

2.1.3 Indexing and Ordering

When writing parallel PDE codes, there is extra complexity caused by having multiple ways of indexing
(numbering) and ordering objects such as vertices and degrees of freedom. For example, a grid generator or
partitioner may renumber the nodes, requiring adjustment of the other data structures that refer to these
objects; see Figure Natural Ordering and PETSc Ordering for a 2D Distributed Array (Four Processes). In
addition, local numbering (on a single process) of objects may be different than the global (cross-process)
numbering. PETSc provides a variety of tools to help to manage the mapping amongst the various numbering
systems. The two most basic are the AO (application ordering), which enables mapping between different
global (cross-process) numbering schemes and the ISLocalToGlobalMapping, which allows mapping
between local (on-process) and global (cross-process) numbering.

2.1. Vectors and Parallel Data 29

PETSc Users Manual, Release 3.14.2

Application Orderings

In many applications it is desirable to work with one or more “orderings” (or numberings) of degrees of
freedom, cells, nodes, etc. Doing so in a parallel environment is complicated by the fact that each process
cannot keep complete lists of the mappings between different orderings. In addition, the orderings used in
the PETSc linear algebra routines (often contiguous ranges) may not correspond to the “natural” orderings
for the application.

PETSc provides certain utility routines that allow one to deal cleanly and efficiently with the various order-
ings. To define a new application ordering (called an AO in PETSc), one can call the routine

AOCreateBasic(MPI_Comm comm,PetscInt n,const PetscInt apordering[],const PetscInt␣
↪→petscordering[],AO *ao);

The arrays apordering and petscordering, respectively, contain a list of integers in the application
ordering and their corresponding mapped values in the PETSc ordering. Each process can provide whatever
subset of the ordering it chooses, but multiple processes should never contribute duplicate values. The
argument n indicates the number of local contributed values.

For example, consider a vector of length 5, where node 0 in the application ordering corresponds to node 3
in the PETSc ordering. In addition, nodes 1, 2, 3, and 4 of the application ordering correspond, respectively,
to nodes 2, 1, 4, and 0 of the PETSc ordering. We can write this correspondence as

{0, 1, 2, 3, 4} → {3, 2, 1, 4, 0}.

The user can create the PETSc AO mappings in a number of ways. For example, if using two processes, one
could call

AOCreateBasic(PETSC_COMM_WORLD,2,{0,3},{3,4},&ao);

on the first process and

AOCreateBasic(PETSC_COMM_WORLD,3,{1,2,4},{2,1,0},&ao);

on the other process.

Once the application ordering has been created, it can be used with either of the commands

AOPetscToApplication(AO ao,PetscInt n,PetscInt *indices);
AOApplicationToPetsc(AO ao,PetscInt n,PetscInt *indices);

Upon input, the n-dimensional array indices specifies the indices to be mapped, while upon output,
indices contains the mapped values. Since we, in general, employ a parallel database for the AO mappings,
it is crucial that all processes that called AOCreateBasic() also call these routines; these routines cannot be
called by just a subset of processes in the MPI communicator that was used in the call to AOCreateBasic().

An alternative routine to create the application ordering, AO, is

AOCreateBasicIS(IS apordering,IS petscordering,AO *ao);

where index sets (see Index Sets) are used instead of integer arrays.

The mapping routines

AOPetscToApplicationIS(AO ao,IS indices);
AOApplicationToPetscIS(AO ao,IS indices);

30 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

will map index sets (IS objects) between orderings. Both the AOXxxToYyy() and AOXxxToYyyIS()
routines can be used regardless of whether the AO was created with a AOCreateBasic() or AOCreate-
BasicIS().

The AO context should be destroyed with AODestroy(AO *ao) and viewed with AOView(AO ao,
PetscViewer viewer).

Although we refer to the two orderings as “PETSc” and “application” orderings, the user is free to use them
both for application orderings and to maintain relationships among a variety of orderings by employing
several AO contexts.

The AOxxToxx() routines allow negative entries in the input integer array. These entries are not mapped;
they simply remain unchanged. This functionality enables, for example, mapping neighbor lists that use
negative numbers to indicate nonexistent neighbors due to boundary conditions, etc.

Local to Global Mappings

In many applications one works with a global representation of a vector (usually on a vector obtained with
VecCreateMPI()) and a local representation of the same vector that includes ghost points required for
local computation. PETSc provides routines to help map indices from a local numbering scheme to the
PETSc global numbering scheme. This is done via the following routines

ISLocalToGlobalMappingCreate(MPI_Comm comm,PetscInt bs,PetscInt N,PetscInt* globalnum,
↪→PetscCopyMode mode,ISLocalToGlobalMapping* ctx);
ISLocalToGlobalMappingApply(ISLocalToGlobalMapping ctx,PetscInt n,PetscInt *in,
↪→PetscInt *out);
ISLocalToGlobalMappingApplyIS(ISLocalToGlobalMapping ctx,IS isin,IS* isout);
ISLocalToGlobalMappingDestroy(ISLocalToGlobalMapping *ctx);

Here N denotes the number of local indices, globalnum contains the global number of each local num-
ber, and ISLocalToGlobalMapping is the resulting PETSc object that contains the information needed
to apply the mapping with either ISLocalToGlobalMappingApply() or ISLocalToGlobalMappin-
gApplyIS().

Note that the ISLocalToGlobalMapping routines serve a different purpose than the AO routines. In the
former case they provide a mapping from a local numbering scheme (including ghost points) to a global
numbering scheme, while in the latter they provide a mapping between two global numbering schemes. In
fact, many applications may use both AO and ISLocalToGlobalMapping routines. The AO routines are
first used to map from an application global ordering (that has no relationship to parallel processing etc.) to
the PETSc ordering scheme (where each process has a contiguous set of indices in the numbering). Then in
order to perform function or Jacobian evaluations locally on each process, one works with a local numbering
scheme that includes ghost points. The mapping from this local numbering scheme back to the global PETSc
numbering can be handled with the ISLocalToGlobalMapping routines.

If one is given a list of block indices in a global numbering, the routine

ISGlobalToLocalMappingApplyBlock(ISLocalToGlobalMapping ctx,
↪→ISGlobalToLocalMappingMode type,PetscInt nin,PetscInt idxin[],PetscInt *nout,
↪→PetscInt idxout[]);

will provide a new list of indices in the local numbering. Again, negative values in idxin are left unmapped.
But, in addition, if type is set to IS_GTOLM_MASK , then nout is set to nin and all global values in
idxin that are not represented in the local to global mapping are replaced by -1. When type is set to
IS_GTOLM_DROP, the values in idxin that are not represented locally in the mapping are not included
in idxout, so that potentially nout is smaller than nin. One must pass in an array long enough to
hold all the indices. One can call ISGlobalToLocalMappingApplyBlock() with idxout equal to

2.1. Vectors and Parallel Data 31

PETSc Users Manual, Release 3.14.2

NULL to determine the required length (returned in nout) and then allocate the required space and call
ISGlobalToLocalMappingApplyBlock() a second time to set the values.

Often it is convenient to set elements into a vector using the local node numbering rather than the global
node numbering (e.g., each process may maintain its own sublist of vertices and elements and number them
locally). To set values into a vector with the local numbering, one must first call

VecSetLocalToGlobalMapping(Vec v,ISLocalToGlobalMapping ctx);

and then call

VecSetValuesLocal(Vec x,PetscInt n,const PetscInt indices[],const PetscScalar␣
↪→values[],INSERT_VALUES);

Now the indices use the local numbering, rather than the global, meaning the entries lie in [0, n) where n
is the local size of the vector.

2.1.4 Structured Grids Using Distributed Arrays

Distributed arrays (DMDAs), which are used in conjunction with PETSc vectors, are intended for use
with logically regular rectangular grids when communication of nonlocal data is needed before certain local
computations can occur. PETSc distributed arrays are designed only for the case in which data can be
thought of as being stored in a standard multidimensional array; thus, DMDAs are not intended for parallelizing
unstructured grid problems, etc. DAs are intended for communicating vector (field) information; they are
not intended for storing matrices.

For example, a typical situation one encounters in solving PDEs in parallel is that, to evaluate a local function,
f(x), each process requires its local portion of the vector x as well as its ghost points (the bordering portions
of the vector that are owned by neighboring processes). Figure Ghost Points for Two Stencil Types on the
Seventh Process illustrates the ghost points for the seventh process of a two-dimensional, regular parallel
grid. Each box represents a process; the ghost points for the seventh process’s local part of a parallel array
are shown in gray.

Box-type stencil Star-type stencil

Proc 6

Proc 0 Proc 0Proc 1 Proc 1

Proc 6

Fig. 2.1: Ghost Points for Two Stencil Types on the Seventh Process

32 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

Creating Distributed Arrays

The PETSc DMDA object manages the parallel communication required while working with data stored
in regular arrays. The actual data is stored in appropriately sized vector objects; the DMDA object only
contains the parallel data layout information and communication information, however it may be used to
create vectors and matrices with the proper layout.

One creates a distributed array communication data structure in two dimensions with the command

DMDACreate2d(MPI_Comm comm,DMBoundaryType xperiod,DMBoundaryType yperiod,
↪→DMDAStencilType st,PetscInt M, PetscInt N,PetscInt m,PetscInt n,PetscInt dof,
↪→PetscInt s,PetscInt *lx,PetscInt *ly,DM *da);

The arguments M and N indicate the global numbers of grid points in each direction, while m and n denote
the process partition in each direction; m*n must equal the number of processes in the MPI communica-
tor, comm. Instead of specifying the process layout, one may use PETSC_DECIDE for m and n so that
PETSc will determine the partition using MPI. The type of periodicity of the array is specified by xpe-
riod and yperiod, which can be DM_BOUNDARY_NONE (no periodicity), DM_BOUNDARY_PERIODIC (pe-
riodic in that direction), DM_BOUNDARY_TWIST (periodic in that direction, but identified in reverse order),
DM_BOUNDARY_GHOSTED , or DM_BOUNDARY_MIRROR. The argument dof indicates the number of degrees
of freedom at each array point, and s is the stencil width (i.e., the width of the ghost point region). The
optional arrays lx and ly may contain the number of nodes along the x and y axis for each cell, i.e. the
dimension of lx is m and the dimension of ly is n; alternately, NULL may be passed in.

Two types of distributed array communication data structures can be created, as specified by
st. Star-type stencils that radiate outward only in the coordinate directions are indicated by
DMDA_STENCIL_STAR, while box-type stencils are specified by DMDA_STENCIL_BOX. For example, for
the two-dimensional case, DMDA_STENCIL_STAR with width 1 corresponds to the standard 5-point stencil,
while DMDA_STENCIL_BOX with width 1 denotes the standard 9-point stencil. In both instances the ghost
points are identical, the only difference being that with star-type stencils certain ghost points are ignored,
decreasing substantially the number of messages sent. Note that the DMDA_STENCIL_STAR stencils can
save interprocess communication in two and three dimensions.

These DMDA stencils have nothing directly to do with any finite difference stencils one might chose to use
for a discretization; they only ensure that the correct values are in place for application of a user-defined
finite difference stencil (or any other discretization technique).

The commands for creating distributed array communication data structures in one and three dimensions
are analogous:

DMDACreate1d(MPI_Comm comm,DMBoundaryType xperiod,PetscInt M,PetscInt w,PetscInt s,
↪→PetscInt *lc,DM *inra);
DMDACreate3d(MPI_Comm comm,DMBoundaryType xperiod,DMBoundaryType yperiod,
↪→DMBoundaryType zperiod, DMDAStencilType stencil_type,PetscInt M,PetscInt N,PetscInt␣
↪→P,PetscInt m,PetscInt n,PetscInt p,PetscInt w,PetscInt s,PetscInt *lx,PetscInt *ly,
↪→PetscInt *lz,DM *inra);

The routines to create distributed arrays are collective, so that all processes in the communicator comm must
call DACreateXXX().

2.1. Vectors and Parallel Data 33

PETSc Users Manual, Release 3.14.2

Local/Global Vectors and Scatters

Each DMDA object defines the layout of two vectors: a distributed global vector and a local vector that
includes room for the appropriate ghost points. The DMDA object provides information about the size and
layout of these vectors, but does not internally allocate any associated storage space for field values. Instead,
the user can create vector objects that use the DMDA layout information with the routines

DMCreateGlobalVector(DM da,Vec *g);
DMCreateLocalVector(DM da,Vec *l);

These vectors will generally serve as the building blocks for local and global PDE solutions, etc. If additional
vectors with such layout information are needed in a code, they can be obtained by duplicating l or g via
VecDuplicate() or VecDuplicateVecs().

We emphasize that a distributed array provides the information needed to communicate the ghost value
information between processes. In most cases, several different vectors can share the same communica-
tion information (or, in other words, can share a given DMDA). The design of the DMDA object makes this
easy, as each DMDA operation may operate on vectors of the appropriate size, as obtained via DMCreateLo-
calVector() and DMCreateGlobalVector() or as produced by VecDuplicate(). As such, the DMDA
scatter/gather operations (e.g., DMGlobalToLocalBegin()) require vector input/output arguments, as
discussed below.

PETSc currently provides no container for multiple arrays sharing the same distributed array communication;
note, however, that the dof parameter handles many cases of interest.

At certain stages of many applications, there is a need to work on a local portion of the vector, including
the ghost points. This may be done by scattering a global vector into its local parts by using the two-stage
commands

DMGlobalToLocalBegin(DM da,Vec g,InsertMode iora,Vec l);
DMGlobalToLocalEnd(DM da,Vec g,InsertMode iora,Vec l);

which allow the overlap of communication and computation. Since the global and local vectors, given by
g and l, respectively, must be compatible with the distributed array, da, they should be generated by
DMCreateGlobalVector() and DMCreateLocalVector() (or be duplicates of such a vector obtained
via VecDuplicate()). The InsertMode can be either ADD_VALUES or INSERT_VALUES.

One can scatter the local patches into the distributed vector with the command

DMLocalToGlobal(DM da,Vec l,InsertMode mode,Vec g);

or the commands

DMLocalToGlobalBegin(DM da,Vec l,InsertMode mode,Vec g);
/* (Computation to overlap with communication) */
DMLocalToGlobalEnd(DM da,Vec l,InsertMode mode,Vec g);

In general this is used with an InsertMode of ADD_VALUES, because if one wishes to insert values into
the global vector they should just access the global vector directly and put in the values.

A third type of distributed array scatter is from a local vector (including ghost points that contain irrelevant
values) to a local vector with correct ghost point values. This scatter may be done with the commands

DMLocalToLocalBegin(DM da,Vec l1,InsertMode iora,Vec l2);
DMLocalToLocalEnd(DM da,Vec l1,InsertMode iora,Vec l2);

Since both local vectors, l1 and l2, must be compatible with the distributed array, da, they should be gen-
erated by DMCreateLocalVector() (or be duplicates of such vectors obtained via VecDuplicate()).

34 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

The InsertMode can be either ADD_VALUES or INSERT_VALUES.

It is possible to directly access the vector scatter contexts (see below) used in the local-to-global (ltog),
global-to-local (gtol), and local-to-local (ltol) scatters with the command

DMDAGetScatter(DM da,VecScatter *ltog,VecScatter *gtol,VecScatter *ltol);

Most users should not need to use these contexts.

Local (Ghosted) Work Vectors

In most applications the local ghosted vectors are only needed during user “function evaluations”. PETSc
provides an easy, light-weight (requiring essentially no CPU time) way to obtain these work vectors and
return them when they are no longer needed. This is done with the routines

DMGetLocalVector(DM da,Vec *l);
... use the local vector l ...
DMRestoreLocalVector(DM da,Vec *l);

Accessing the Vector Entries for DMDA Vectors

PETSc provides an easy way to set values into the DMDA Vectors and access them using the natural grid
indexing. This is done with the routines

DMDAVecGetArray(DM da,Vec l,void *array);
... use the array indexing it with 1 or 2 or 3 dimensions ...
... depending on the dimension of the DMDA ...
DMDAVecRestoreArray(DM da,Vec l,void *array);
DMDAVecGetArrayRead(DM da,Vec l,void *array);
... use the array indexing it with 1 or 2 or 3 dimensions ...
... depending on the dimension of the DMDA ...
DMDAVecRestoreArrayRead(DM da,Vec l,void *array);

and

DMDAVecGetArrayDOF(DM da,Vec l,void *array);
... use the array indexing it with 1 or 2 or 3 dimensions ...
... depending on the dimension of the DMDA ...
DMDAVecRestoreArrayDOF(DM da,Vec l,void *array);
DMDAVecGetArrayDOFRead(DM da,Vec l,void *array);
... use the array indexing it with 1 or 2 or 3 dimensions ...
... depending on the dimension of the DMDA ...
DMDAVecRestoreArrayDOFRead(DM da,Vec l,void *array);

where array is a multidimensional C array with the same dimension as da. The vector l can be either a
global vector or a local vector. The array is accessed using the usual global indexing on the entire grid, but
the user may only refer to the local and ghost entries of this array as all other entries are undefined. For
example, for a scalar problem in two dimensions one could use

PetscScalar **f,**u;
...
DMDAVecGetArray(DM da,Vec local,&u);
DMDAVecGetArray(DM da,Vec global,&f);
...
f[i][j] = u[i][j] - ...

(continues on next page)

2.1. Vectors and Parallel Data 35

PETSc Users Manual, Release 3.14.2

(continued from previous page)
...
DMDAVecRestoreArray(DM da,Vec local,&u);
DMDAVecRestoreArray(DM da,Vec global,&f);

The recommended approach for multi-component PDEs is to declare a struct representing the fields defined
at each node of the grid, e.g.

typedef struct {
PetscScalar u,v,omega,temperature;

} Node;

and write residual evaluation using

Node **f,**u;
DMDAVecGetArray(DM da,Vec local,&u);
DMDAVecGetArray(DM da,Vec global,&f);
...

f[i][j].omega = ...
...
DMDAVecRestoreArray(DM da,Vec local,&u);
DMDAVecRestoreArray(DM da,Vec global,&f);

See SNES Tutorial ex5 for a complete example and see SNES Tutorial ex19 for an example for a multi-
component PDE.

Grid Information

The global indices of the lower left corner of the local portion of the array as well as the local array size can
be obtained with the commands

DMDAGetCorners(DM da,PetscInt *x,PetscInt *y,PetscInt *z,PetscInt *m,PetscInt *n,
↪→PetscInt *p);
DMDAGetGhostCorners(DM da,PetscInt *x,PetscInt *y,PetscInt *z,PetscInt *m,PetscInt *n,
↪→PetscInt *p);

The first version excludes any ghost points, while the second version includes them. The routine DMDAGet-
GhostCorners() deals with the fact that subarrays along boundaries of the problem domain have ghost
points only on their interior edges, but not on their boundary edges.

When either type of stencil is used, DMDA_STENCIL_STAR or DMDA_STENCIL_BOX, the local vec-
tors (with the ghost points) represent rectangular arrays, including the extra corner elements in the
DMDA_STENCIL_STAR case. This configuration provides simple access to the elements by employing two- (or
three-) dimensional indexing. The only difference between the two cases is that when DMDA_STENCIL_STAR
is used, the extra corner components are not scattered between the processes and thus contain undefined
values that should not be used.

To assemble global stiffness matrices, one can use these global indices with MatSetValues() or MatSet-
ValuesStencil(). Alternately, the global node number of each local node, including the ghost nodes,
can be obtained by calling

DMGetLocalToGlobalMapping(DM da,ISLocalToGlobalMapping *map);

followed by

36 Chapter 2. Programming with PETSc

https://www.mcs.anl.gov/petsc/petsc-current/src/snes/tutorials/ex5.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/snes/tutorials/ex19.c.html

PETSc Users Manual, Release 3.14.2

VecSetLocalToGlobalMapping(Vec v,ISLocalToGlobalMapping map);
MatSetLocalToGlobalMapping(Mat A,ISLocalToGlobalMapping rmapping,
↪→ISLocalToGlobalMapping cmapping);

Now entries may be added to the vector and matrix using the local numbering and VecSetValuesLocal()
and MatSetValuesLocal().

Since the global ordering that PETSc uses to manage its parallel vectors (and matrices) does not usually
correspond to the “natural” ordering of a two- or three-dimensional array, the DMDA structure provides an
application ordering AO (see Application Orderings) that maps between the natural ordering on a rectangular
grid and the ordering PETSc uses to parallelize. This ordering context can be obtained with the command

DMDAGetAO(DM da,AO *ao);

In Figure Natural Ordering and PETSc Ordering for a 2D Distributed Array (Four Processes) we indicate
the orderings for a two-dimensional distributed array, divided among four processes.

Processor 2 Processor 3

22 23 24 29 3026 27 28 29 30

Processor 2 Processor 3

21 22 23 24 25

16 17 18 19 20

11 12 13 14 15

 6 7 8 9 10

 1 2 3 4 5

19 20 21 27 28

16 17 18 25 26

Natural Ordering PETSc Ordering

Processor 1Processor 0Processor 1Processor 0

 7 8 9 14 15

 4 5 6 12 13

 1 2 3 10 11

Fig. 2.2: Natural Ordering and PETSc Ordering for a 2D Distributed Array (Four Processes)

The example SNES Tutorial ex5 illustrates the use of a distributed array in the solution of a nonlinear
problem. The analogous Fortran program is SNES Tutorial ex5f; see SNES: Nonlinear Solvers for a discussion
of the nonlinear solvers.

Staggered Grids

For regular grids with staggered data (living on elements, faces, edges, and/or vertices), the DMStag object
is available. It behaves much like DMDA; see the DMSTAG manual page for more information.

2.1. Vectors and Parallel Data 37

https://www.mcs.anl.gov/petsc/petsc-current/src/snes/tutorials/ex5.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/snes/tutorials/ex5f.F90.html

PETSc Users Manual, Release 3.14.2

2.1.5 Vectors Related to Unstructured Grids

Index Sets

To facilitate general vector scatters and gathers used, for example, in updating ghost points for problems
defined on unstructured grids1, PETSc employs the concept of an index set, via the IS class. An index set,
which is a generalization of a set of integer indices, is used to define scatters, gathers, and similar operations
on vectors and matrices.

The following command creates an index set based on a list of integers:

ISCreateGeneral(MPI_Comm comm,PetscInt n,PetscInt *indices,PetscCopyMode mode, IS␣
↪→*is);

When mode is PETSC_COPY_VALUES, this routine copies the n indices passed to it by the integer array
indices. Thus, the user should be sure to free the integer array indices when it is no longer needed,
perhaps directly after the call to ISCreateGeneral(). The communicator, comm, should consist of all
processes that will be using the IS.

Another standard index set is defined by a starting point (first) and a stride (step), and can be created
with the command

ISCreateStride(MPI_Comm comm,PetscInt n,PetscInt first,PetscInt step,IS *is);

Index sets can be destroyed with the command

ISDestroy(IS &is);

On rare occasions the user may need to access information directly from an index set. Several commands
assist in this process:

ISGetSize(IS is,PetscInt *size);
ISStrideGetInfo(IS is,PetscInt *first,PetscInt *stride);
ISGetIndices(IS is,PetscInt **indices);

The function ISGetIndices() returns a pointer to a list of the indices in the index set. For certain index
sets, this may be a temporary array of indices created specifically for a given routine. Thus, once the user
finishes using the array of indices, the routine

ISRestoreIndices(IS is, PetscInt **indices);

should be called to ensure that the system can free the space it may have used to generate the list of indices.

A blocked version of the index sets can be created with the command

ISCreateBlock(MPI_Comm comm,PetscInt bs,PetscInt n,PetscInt *indices,PetscCopyMode␣
↪→mode, IS *is);

This version is used for defining operations in which each element of the index set refers to a block of
bs vector entries. Related routines analogous to those described above exist as well, including ISBlock-
GetIndices(), ISBlockGetSize(), ISBlockGetLocalSize(), ISGetBlockSize(). See the man
pages for details.

1 Also see DMPlex (DMPlex: Unstructured Grids in PETSc), an abstraction for working with unstructured grids.

38 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

Scatters and Gathers

PETSc vectors have full support for general scatters and gathers. One can select any subset of the components
of a vector to insert or add to any subset of the components of another vector. We refer to these operations
as generalized scatters, though they are actually a combination of scatters and gathers.

To copy selected components from one vector to another, one uses the following set of commands:

VecScatterCreate(Vec x,IS ix,Vec y,IS iy,VecScatter *ctx);
VecScatterBegin(VecScatter ctx,Vec x,Vec y,INSERT_VALUES,SCATTER_FORWARD);
VecScatterEnd(VecScatter ctx,Vec x,Vec y,INSERT_VALUES,SCATTER_FORWARD);
VecScatterDestroy(VecScatter *ctx);

Here ix denotes the index set of the first vector, while iy indicates the index set of the destination vector.
The vectors can be parallel or sequential. The only requirements are that the number of entries in the
index set of the first vector, ix, equals the number in the destination index set, iy, and that the vectors
be long enough to contain all the indices referred to in the index sets. If both x and y are parallel,
their communicator must have the same set of processes, but their process order can be different. The
argument INSERT_VALUES specifies that the vector elements will be inserted into the specified locations
of the destination vector, overwriting any existing values. To add the components, rather than insert them,
the user should select the option ADD_VALUES instead of INSERT_VALUES. One can also use MAX_VALUES
or MIN_VALUES to replace destination with the maximal or minimal of its current value and the scattered
values.

To perform a conventional gather operation, the user simply makes the destination index set, iy, be a stride
index set with a stride of one. Similarly, a conventional scatter can be done with an initial (sending) index
set consisting of a stride. The scatter routines are collective operations (i.e. all processes that own a parallel
vector must call the scatter routines). When scattering from a parallel vector to sequential vectors, each
process has its own sequential vector that receives values from locations as indicated in its own index set.
Similarly, in scattering from sequential vectors to a parallel vector, each process has its own sequential vector
that makes contributions to the parallel vector.

Caution: When INSERT_VALUES is used, if two different processes contribute different values to the same
component in a parallel vector, either value may end up being inserted. When ADD_VALUES is used, the
correct sum is added to the correct location.

In some cases one may wish to “undo” a scatter, that is perform the scatter backwards, switching the roles
of the sender and receiver. This is done by using

VecScatterBegin(VecScatter ctx,Vec y,Vec x,INSERT_VALUES,SCATTER_REVERSE);
VecScatterEnd(VecScatter ctx,Vec y,Vec x,INSERT_VALUES,SCATTER_REVERSE);

Note that the roles of the first two arguments to these routines must be swapped whenever the SCAT-
TER_REVERSE option is used.

Once a VecScatter object has been created it may be used with any vectors that have the appropriate
parallel data layout. That is, one can call VecScatterBegin() and VecScatterEnd() with different
vectors than used in the call to VecScatterCreate() as long as they have the same parallel layout (number
of elements on each process are the same). Usually, these “different” vectors would have been obtained via
calls to VecDuplicate() from the original vectors used in the call to VecScatterCreate().

There is a PETSc routine that is nearly the opposite of VecSetValues(), that is, VecGetValues(), but
it can only get local values from the vector. To get off-process values, the user should create a new vector
where the components are to be stored, and then perform the appropriate vector scatter. For example, if
one desires to obtain the values of the 100th and 200th entries of a parallel vector, p, one could use a code
such as that below. In this example, the values of the 100th and 200th components are placed in the array
values. In this example each process now has the 100th and 200th component, but obviously each process
could gather any elements it needed, or none by creating an index set with no entries.

2.1. Vectors and Parallel Data 39

PETSc Users Manual, Release 3.14.2

Vec p, x; /* initial vector, destination vector */
VecScatter scatter; /* scatter context */
IS from, to; /* index sets that define the scatter */
PetscScalar *values;
PetscInt idx_from[] = {100,200}, idx_to[] = {0,1};

VecCreateSeq(PETSC_COMM_SELF,2,&x);
ISCreateGeneral(PETSC_COMM_SELF,2,idx_from,PETSC_COPY_VALUES,&from);
ISCreateGeneral(PETSC_COMM_SELF,2,idx_to,PETSC_COPY_VALUES,&to);
VecScatterCreate(p,from,x,to,&scatter);
VecScatterBegin(scatter,p,x,INSERT_VALUES,SCATTER_FORWARD);
VecScatterEnd(scatter,p,x,INSERT_VALUES,SCATTER_FORWARD);
VecGetArray(x,&values);
ISDestroy(&from);
ISDestroy(&to);
VecScatterDestroy(&scatter);

The scatter comprises two stages, in order to allow overlap of communication and computation. The intro-
duction of the VecScatter context allows the communication patterns for the scatter to be computed once
and then reused repeatedly. Generally, even setting up the communication for a scatter requires communi-
cation; hence, it is best to reuse such information when possible.

Scattering Ghost Values

Generalized scatters provide a very general method for managing the communication of required ghost
values for unstructured grid computations. One scatters the global vector into a local “ghosted” work
vector, performs the computation on the local work vectors, and then scatters back into the global solution
vector. In the simplest case this may be written as

VecScatterBegin(VecScatter scatter,Vec globalin,Vec localin,InsertMode INSERT_VALUES,␣
↪→ScatterMode SCATTER_FORWARD);
VecScatterEnd(VecScatter scatter,Vec globalin,Vec localin,InsertMode INSERT_VALUES,
↪→ScatterMode SCATTER_FORWARD);
/* For example, do local calculations from localin to localout */
...
VecScatterBegin(VecScatter scatter,Vec localout,Vec globalout,InsertMode ADD_VALUES,
↪→ScatterMode SCATTER_REVERSE);
VecScatterEnd(VecScatter scatter,Vec localout,Vec globalout,InsertMode ADD_VALUES,
↪→ScatterMode SCATTER_REVERSE);

Vectors with Locations for Ghost Values

There are two minor drawbacks to the basic approach described above:

• the extra memory requirement for the local work vector, localin, which duplicates the memory in
globalin, and

• the extra time required to copy the local values from localin to globalin.

An alternative approach is to allocate global vectors with space preallocated for the ghost values; this may
be done with either

VecCreateGhost(MPI_Comm comm,PetscInt n,PetscInt N,PetscInt nghost,PetscInt *ghosts,
↪→Vec *vv)

or

40 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

VecCreateGhostWithArray(MPI_Comm comm,PetscInt n,PetscInt N,PetscInt nghost,PetscInt␣
↪→*ghosts,PetscScalar *array,Vec *vv)

Here n is the number of local vector entries, N is the number of global entries (or NULL) and nghost is
the number of ghost entries. The array ghosts is of size nghost and contains the global vector location
for each local ghost location. Using VecDuplicate() or VecDuplicateVecs() on a ghosted vector will
generate additional ghosted vectors.

In many ways, a ghosted vector behaves just like any other MPI vector created by VecCreateMPI(). The
difference is that the ghosted vector has an additional “local” representation that allows one to access the
ghost locations. This is done through the call to

VecGhostGetLocalForm(Vec g,Vec *l);

The vector l is a sequential representation of the parallel vector g that shares the same array space (and
hence numerical values); but allows one to access the “ghost” values past “the end of the” array. Note that
one access the entries in l using the local numbering of elements and ghosts, while they are accessed in g
using the global numbering.

A common usage of a ghosted vector is given by

VecGhostUpdateBegin(Vec globalin,InsertMode INSERT_VALUES, ScatterMode SCATTER_
↪→FORWARD);
VecGhostUpdateEnd(Vec globalin,InsertMode INSERT_VALUES, ScatterMode SCATTER_FORWARD);
VecGhostGetLocalForm(Vec globalin,Vec *localin);
VecGhostGetLocalForm(Vec globalout,Vec *localout);
... Do local calculations from localin to localout ...
VecGhostRestoreLocalForm(Vec globalin,Vec *localin);
VecGhostRestoreLocalForm(Vec globalout,Vec *localout);
VecGhostUpdateBegin(Vec globalout,InsertMode ADD_VALUES, ScatterMode SCATTER_REVERSE);
VecGhostUpdateEnd(Vec globalout,InsertMode ADD_VALUES, ScatterMode SCATTER_REVERSE);

The routines VecGhostUpdateBegin() and VecGhostUpdateEnd() are equivalent to the routines
VecScatterBegin() and VecScatterEnd() above except that since they are scattering into the ghost
locations, they do not need to copy the local vector values, which are already in place. In addition, the
user does not have to allocate the local work vector, since the ghosted vector already has allocated slots to
contain the ghost values.

The input arguments INSERT_VALUES and SCATTER_FORWARD cause the ghost values to be correctly
updated from the appropriate process. The arguments ADD_VALUES and SCATTER_REVERSE update the
“local” portions of the vector from all the other processes’ ghost values. This would be appropriate, for
example, when performing a finite element assembly of a load vector. One can also use MAX_VALUES or
MIN_VALUES with SCATTER_REVERSE.

Partitioning discusses the important topic of partitioning an unstructured grid.

2.2 Matrices

PETSc provides a variety of matrix implementations because no single matrix format is appropriate for all
problems. Currently, we support dense storage and compressed sparse row storage (both sequential and
parallel versions), as well as several specialized formats. Additional formats can be added.

This chapter describes the basics of using PETSc matrices in general (regardless of the particular format
chosen) and discusses tips for efficient use of the several simple uniprocess and parallel matrix types. The
use of PETSc matrices involves the following actions: create a particular type of matrix, insert values into it,

2.2. Matrices 41

PETSc Users Manual, Release 3.14.2

process the matrix, use the matrix for various computations, and finally destroy the matrix. The application
code does not need to know or care about the particular storage formats of the matrices.

2.2.1 Creating and Assembling Matrices

The simplest routine for forming a PETSc matrix, A, is followed by

MatCreate(MPI_Comm comm,Mat *A)
MatSetSizes(Mat A,PetscInt m,PetscInt n,PetscInt M,PetscInt N)

This routine generates a sequential matrix when running one process and a parallel matrix for two or more
processes; the particular matrix format is set by the user via options database commands. The user specifies
either the global matrix dimensions, given by M and N or the local dimensions, given by m and n while PETSc
completely controls memory allocation. This routine facilitates switching among various matrix types, for
example, to determine the format that is most efficient for a certain application. By default, MatCreate()
employs the sparse AIJ format, which is discussed in detail Sparse Matrices. See the manual pages for further
information about available matrix formats.

To insert or add entries to a matrix, one can call a variant of MatSetValues(), either

MatSetValues(Mat A,PetscInt m,const PetscInt idxm[],PetscInt n,const PetscInt idxn[],
↪→const PetscScalar values[],INSERT_VALUES);

or

MatSetValues(Mat A,PetscInt m,const PetscInt idxm[],PetscInt n,const PetscInt idxn[],
↪→const PetscScalar values[],ADD_VALUES);

This routine inserts or adds a logically dense subblock of dimension m*n into the matrix. The integer indices
idxm and idxn, respectively, indicate the global row and column numbers to be inserted. MatSetValues()
uses the standard C convention, where the row and column matrix indices begin with zero regardless of the
storage format employed. The array values is logically two-dimensional, containing the values that are to be
inserted. By default the values are given in row major order, which is the opposite of the Fortran convention,
meaning that the value to be put in row idxm[i] and column idxn[j] is located in values[i*n+j].
To allow the insertion of values in column major order, one can call the command

MatSetOption(Mat A,MAT_ROW_ORIENTED,PETSC_FALSE);

Warning: Several of the sparse implementations do not currently support the column-oriented option.

This notation should not be a mystery to anyone. For example, to insert one matrix into another when using
MATLAB, one uses the command A(im,in) = B; where im and in contain the indices for the rows and
columns. This action is identical to the calls above to MatSetValues().

When using the block compressed sparse row matrix format (MATSEQBAIJ or MATMPIBAIJ), one can
insert elements more efficiently using the block variant, MatSetValuesBlocked() or MatSetValues-
BlockedLocal().

The function MatSetOption() accepts several other inputs; see the manual page for details.

After the matrix elements have been inserted or added into the matrix, they must be processed (also called
“assembled”) before they can be used. The routines for matrix processing are

MatAssemblyBegin(Mat A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(Mat A,MAT_FINAL_ASSEMBLY);

42 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

By placing other code between these two calls, the user can perform computations while messages are in
transit. Calls to MatSetValues() with the INSERT_VALUES and ADD_VALUES options cannot be mixed
without intervening calls to the assembly routines. For such intermediate assembly calls the second routine
argument typically should be MAT_FLUSH_ASSEMBLY, which omits some of the work of the full assembly
process. MAT_FINAL_ASSEMBLY is required only in the last matrix assembly before a matrix is used.

Even though one may insert values into PETSc matrices without regard to which process eventually stores
them, for efficiency reasons we usually recommend generating most entries on the process where they are
destined to be stored. To help the application programmer with this task for matrices that are distributed
across the processes by ranges, the routine

MatGetOwnershipRange(Mat A,PetscInt *first_row,PetscInt *last_row);

informs the user that all rows from first_row to last_row-1 (since the value returned in last_row is
one more than the global index of the last local row) will be stored on the local process.

In the sparse matrix implementations, once the assembly routines have been called, the matrices are com-
pressed and can be used for matrix-vector multiplication, etc. Any space for preallocated nonzeros that
was not filled by a call to MatSetValues() or a related routine is compressed out by assembling with
MAT_FINAL_ASSEMBLY. If you intend to use that extra space later, be sure to insert explicit zeros before
assembling with MAT_FINAL_ASSEMBLY so the space will not be compressed out. Once the matrix has been
assembled, inserting new values will be expensive since it will require copies and possible memory allocation.

One may repeatedly assemble matrices that retain the same nonzero pattern (such as within a nonlinear or
time-dependent problem). Where possible, data structures and communication information will be reused
(instead of regenerated) during successive steps, thereby increasing efficiency. See KSP Tutorial ex5 for a
simple example of solving two linear systems that use the same matrix data structure.

Sparse Matrices

The default matrix representation within PETSc is the general sparse AIJ format (also called the Yale sparse
matrix format or compressed sparse row format, CSR). This section discusses tips for efficiently using this
matrix format for large-scale applications. Additional formats (such as block compressed row and block
diagonal storage, which are generally much more efficient for problems with multiple degrees of freedom per
node) are discussed below. Beginning users need not concern themselves initially with such details and may
wish to proceed directly to Basic Matrix Operations. However, when an application code progresses to the
point of tuning for efficiency and/or generating timing results, it is crucial to read this information.

Sequential AIJ Sparse Matrices

In the PETSc AIJ matrix formats, we store the nonzero elements by rows, along with an array of corre-
sponding column numbers and an array of pointers to the beginning of each row. Note that the diagonal
matrix entries are stored with the rest of the nonzeros (not separately).

To create a sequential AIJ sparse matrix, A, with m rows and n columns, one uses the command

MatCreateSeqAIJ(PETSC_COMM_SELF,PetscInt m,PetscInt n,PetscInt nz,PetscInt *nnz,Mat␣
↪→*A);

where nz or nnz can be used to preallocate matrix memory, as discussed below. The user can set nz=0 and
nnz=NULL for PETSc to control all matrix memory allocation.

The sequential and parallel AIJ matrix storage formats by default employ i-nodes (identical nodes) when
possible. We search for consecutive rows with the same nonzero structure, thereby reusing matrix information

2.2. Matrices 43

https://www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/tutorials/ex5.c.html

PETSc Users Manual, Release 3.14.2

for increased efficiency. Related options database keys are -mat_no_inode (do not use inodes) and -
mat_inode_limit <limit> (set inode limit (max limit=5)). Note that problems with a single degree of
freedom per grid node will automatically not use I-nodes.

The internal data representation for the AIJ formats employs zero-based indexing.

Preallocation of Memory for Sequential AIJ Sparse Matrices

The dynamic process of allocating new memory and copying from the old storage to the new is intrinsically
very expensive. Thus, to obtain good performance when assembling an AIJ matrix, it is crucial to preallocate
the memory needed for the sparse matrix. The user has two choices for preallocating matrix memory via
MatCreateSeqAIJ().

One can use the scalar nz to specify the expected number of nonzeros for each row. This is generally fine
if the number of nonzeros per row is roughly the same throughout the matrix (or as a quick and easy first
step for preallocation). If one underestimates the actual number of nonzeros in a given row, then during the
assembly process PETSc will automatically allocate additional needed space. However, this extra memory
allocation can slow the computation,

If different rows have very different numbers of nonzeros, one should attempt to indicate (nearly) the exact
number of elements intended for the various rows with the optional array, nnz of length m, where m is the
number of rows, for example

PetscInt nnz[m];
nnz[0] = <nonzeros in row 0>
nnz[1] = <nonzeros in row 1>
....
nnz[m-1] = <nonzeros in row m-1>

In this case, the assembly process will require no additional memory allocations if the nnz estimates are
correct. If, however, the nnz estimates are incorrect, PETSc will automatically obtain the additional needed
space, at a slight loss of efficiency.

Using the array nnz to preallocate memory is especially important for efficient matrix assembly if the number
of nonzeros varies considerably among the rows. One can generally set nnz either by knowing in advance the
problem structure (e.g., the stencil for finite difference problems on a structured grid) or by precomputing
the information by using a segment of code similar to that for the regular matrix assembly. The overhead
of determining the nnz array will be quite small compared with the overhead of the inherently expensive
mallocs and moves of data that are needed for dynamic allocation during matrix assembly. Always guess
high if an exact value is not known (extra space is cheaper than too little).

Thus, when assembling a sparse matrix with very different numbers of nonzeros in various rows, one could
proceed as follows for finite difference methods:

1. Allocate integer array nnz.

2. Loop over grid, counting the expected number of nonzeros for the row(s) associated with the various
grid points.

3. Create the sparse matrix via MatCreateSeqAIJ() or alternative.

4. Loop over the grid, generating matrix entries and inserting in matrix via MatSetValues().

For (vertex-based) finite element type calculations, an analogous procedure is as follows:

1. Allocate integer array nnz.

2. Loop over vertices, computing the number of neighbor vertices, which determines the number of nonze-
ros for the corresponding matrix row(s).

44 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

3. Create the sparse matrix via MatCreateSeqAIJ() or alternative.

4. Loop over elements, generating matrix entries and inserting in matrix via MatSetValues().

The -info option causes the routines MatAssemblyBegin() and MatAssemblyEnd() to print infor-
mation about the success of the preallocation. Consider the following example for the MATSEQAIJ matrix
format:

MatAssemblyEnd_SeqAIJ:Matrix size 10 X 10; storage space:20 unneeded, 100 used
MatAssemblyEnd_SeqAIJ:Number of mallocs during MatSetValues is 0

The first line indicates that the user preallocated 120 spaces but only 100 were used. The second line indicates
that the user preallocated enough space so that PETSc did not have to internally allocate additional space
(an expensive operation). In the next example the user did not preallocate sufficient space, as indicated by
the fact that the number of mallocs is very large (bad for efficiency):

MatAssemblyEnd_SeqAIJ:Matrix size 10 X 10; storage space:47 unneeded, 1000 used
MatAssemblyEnd_SeqAIJ:Number of mallocs during MatSetValues is 40000

Although at first glance such procedures for determining the matrix structure in advance may seem unusual,
they are actually very efficient because they alleviate the need for dynamic construction of the matrix data
structure, which can be very expensive.

Parallel AIJ Sparse Matrices

Parallel sparse matrices with the AIJ format can be created with the command

MatCreateAIJ=(MPI_Comm comm,PetscInt m,PetscInt n,PetscInt M,PetscInt N,PetscInt d_nz,
↪→PetscInt *d_nnz, PetscInt o_nz,PetscInt *o_nnz,Mat *A);

A is the newly created matrix, while the arguments m, M, and N, indicate the number of local rows and
the number of global rows and columns, respectively. In the PETSc partitioning scheme, all the matrix
columns are local and n is the number of columns corresponding to local part of a parallel vector. Either
the local or global parameters can be replaced with PETSC_DECIDE, so that PETSc will determine them.
The matrix is stored with a fixed number of rows on each process, given by m, or determined by PETSc if
m is PETSC_DECIDE.

If PETSC_DECIDE is not used for the arguments m and n, then the user must ensure that they are chosen
to be compatible with the vectors. To do this, one first considers the matrix-vector product y = Ax. The m
that is used in the matrix creation routine MatCreateAIJ() must match the local size used in the vector
creation routine VecCreateMPI() for y. Likewise, the n used must match that used as the local size in
VecCreateMPI() for x.

The user must set d_nz=0, o_nz=0, d_nnz=NULL, and o_nnz=NULL for PETSc to control dynamic
allocation of matrix memory space. Analogous to nz and nnz for the routine MatCreateSeqAIJ(), these
arguments optionally specify nonzero information for the diagonal (d_nz and d_nnz) and off-diagonal (o_nz
and o_nnz) parts of the matrix. For a square global matrix, we define each process’s diagonal portion to
be its local rows and the corresponding columns (a square submatrix); each process’s off-diagonal portion
encompasses the remainder of the local matrix (a rectangular submatrix). The rank in the MPI communicator
determines the absolute ordering of the blocks. That is, the process with rank 0 in the communicator given
to MatCreateAIJ() contains the top rows of the matrix; the ith process in that communicator contains
the ith block of the matrix.

2.2. Matrices 45

PETSc Users Manual, Release 3.14.2

Preallocation of Memory for Parallel AIJ Sparse Matrices

As discussed above, preallocation of memory is critical for achieving good performance during matrix assem-
bly, as this reduces the number of allocations and copies required. We present an example for three processes
to indicate how this may be done for the MATMPIAIJ matrix format. Consider the 8 by 8 matrix, which is
partitioned by default with three rows on the first process, three on the second and two on the third.

1 2 0 | 0 3 0 | 0 4
0 5 6 | 7 0 0 | 8 0
9 0 10 | 11 0 0 | 12 0

13 0 14 | 15 16 17 | 0 0
0 18 0 | 19 20 21 | 0 0
0 0 0 | 22 23 0 | 24 0

25 26 27 | 0 0 28 | 29 0
30 0 0 | 31 32 33 | 0 34


The “diagonal” submatrix, d, on the first process is given by 1 2 0

0 5 6
9 0 10

 ,

while the “off-diagonal” submatrix, o, matrix is given by 0 3 0 0 4
7 0 0 8 0
11 0 0 12 0

 .

For the first process one could set d_nz to 2 (since each row has 2 nonzeros) or, alternatively, set d_nnz to
{2, 2, 2}. The o_nz could be set to 2 since each row of the o matrix has 2 nonzeros, or o_nnz could be set
to {2, 2, 2}.

For the second process the d submatrix is given by 15 16 17
19 20 21
22 23 0

 .

Thus, one could set d_nz to 3, since the maximum number of nonzeros in each row is 3, or alternatively one
could set d_nnz to {3, 3, 2}, thereby indicating that the first two rows will have 3 nonzeros while the third
has 2. The corresponding o submatrix for the second process is 13 0 14 0 0

0 18 0 0 0
0 0 0 24 0


so that one could set o_nz to 2 or o_nnz to {2,1,1}.

Note that the user never directly works with the d and o submatrices, except when preallocating storage
space as indicated above. Also, the user need not preallocate exactly the correct amount of space; as long
as a sufficiently close estimate is given, the high efficiency for matrix assembly will remain.

As described above, the option -info will print information about the success of preallocation during matrix
assembly. For the MATMPIAIJ and MATMPIBAIJ formats, PETSc will also list the number of elements owned
by on each process that were generated on a different process. For example, the statements

46 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

MatAssemblyBegin_MPIAIJ:Stash has 10 entries, uses 0 mallocs
MatAssemblyBegin_MPIAIJ:Stash has 3 entries, uses 0 mallocs
MatAssemblyBegin_MPIAIJ:Stash has 5 entries, uses 0 mallocs

indicate that very few values have been generated on different processes. On the other hand, the statements

MatAssemblyBegin_MPIAIJ:Stash has 100000 entries, uses 100 mallocs
MatAssemblyBegin_MPIAIJ:Stash has 77777 entries, uses 70 mallocs

indicate that many values have been generated on the “wrong” processes. This situation can be very
inefficient, since the transfer of values to the “correct” process is generally expensive. By using the command
MatGetOwnershipRange() in application codes, the user should be able to generate most entries on the
owning process.

Note: It is fine to generate some entries on the “wrong” process. Often this can lead to cleaner, simpler, less
buggy codes. One should never make code overly complicated in order to generate all values locally. Rather,
one should organize the code in such a way that most values are generated locally.

Limited-Memory Variable Metric (LMVM) Matrices

Variable metric methods, also known as quasi-Newton methods, are frequently used for root finding problems
and approximate Jacobian matrices or their inverses via sequential nonlinear updates based on the secant
condition. The limited-memory variants do not store the full explicit Jacobian, and instead compute forward
products and inverse applications based on a fixed number of stored update vectors.

Table 2.2: PETSc LMVM matrix implementations.
Method PETSc Type Name Property
“Good” Broyden [Gri12] MATLMVMBrdn lmvmbrdn Square
“Bad” Broyden [Gri12] MATLMVMBadBrdn lmvmbadbrdn Square
Symmetric Rank-1
[NW99]

MATLMVMSR1 lmvmsr1 Symmetric

Davidon-Fletcher-
Powell (DFP) [NW99]

MATLMVMDFP lmvmdfp SPD

Broyden-Fletcher-Goldfarb-Shanno (BFGS)
[NW99]

MATLMVMBFGS lmvmbfgs SPD

Restricted Broyden
Family [EM17]

MATLMVMSymBrdn lmvmsymbrdn SPD

Restricted Broyden
Family (full-memory
diagonal)

MATLMVMDiagBrdn lmvmdiagbrdn SPD

PETSc implements seven different LMVM matrices listed in the table above. They can be created using the
MatCreate() and MatSetType() workflow, and share a number of common interface functions. We will
review the most important ones below:

• MatLMVMAllocate(Mat B, Vec X, Vec F) – Creates the internal data structures necessary to
store nonlinear updates and compute forward/inverse applications. The X vector defines the solution
space while the F defines the function space for the history of updates.

• MatLMVMUpdate(MatB, Vec X, Vec F) – Applies a nonlinear update to the approximate Jacobian
such that sk = xk − xk−1 and yk = f(xk)− f(xk−1), where k is the index for the update.

2.2. Matrices 47

PETSc Users Manual, Release 3.14.2

• MatLMVMReset(Mat B, PetscBool destructive) – Flushes the accumulated nonlinear updates
and resets the matrix to the initial state. If destructive = PETSC_TRUE, the reset also destroys
the internal data structures and necessitates another allocation call before the matrix can be updated
and used for products and solves.

• MatLMVMSetJ0(Mat B, Mat J0) – Defines the initial Jacobian to apply the updates to. If no
initial Jacobian is provided, the updates are applied to an identity matrix.

LMVM matrices can be applied to vectors in forward mode via MatMult() or MatMultAdd(), and
in inverse mode via MatSolve(). They also support MatGetVecs(), MatDuplicate() and Mat-
Copy() operations. The maximum number of sk and yk update vectors stored can be changed via -
mat_lmvm_num_vecs option.

Restricted Broyden Family, DFP and BFGS methods additionally implement special Jacobian initialization
and scaling options available via -mat_lmvm_scale_type <none,scalar,diagonal>. We describe
these choices below:

• none – Sets the initial Jacobian to be equal to the identity matrix. No extra computations are required
when obtaining the search direction or updating the approximation. However, the number of function
evaluations required to converge the Newton solution is typically much larger than what is required
when using other initializations.

• scalar – Defines the initial Jacobian as a scalar multiple of the identity matrix. The scalar value σ
is chosen by solving the one dimensional optimization problem

min
σ
‖σαY − σα−1S‖2F ,

where S and Y are the matrices whose columns contain a subset of update vectors sk and yk, and
α ∈ [0, 1] is defined by the user via -mat_lmvm_alpha and has a different default value for each
LMVM implementation (e.g.: default α = 1 for BFGS produces the well-known yTk sk/y

T
k yk scalar

initialization). The number of updates to be used in the S and Y matrices is 1 by default (i.e.: the
latest update only) and can be changed via -mat_lmvm_scalar_hist. This technique is inspired
by Gilbert and Lemarechal [GL89].

• diagonal – Uses a full-memory restricted Broyden update formula to construct a diagonal matrix for
the Jacobian initialization. Although the full-memory formula is utilized, the actual memory footprint
is restricted to only the vector representing the diagonal and some additional work vectors used in its
construction. The diagonal terms are also re-scaled with every update as suggested in [GL89]. This
initialization requires the most computational effort of the available choices but typically results in a
significant reduction in the number of function evaluations taken to compute a solution.

Note that the user-provided initial Jacobian via MatLMVMSetJ0() overrides and disables all built-in ini-
tialization methods.

Dense Matrices

PETSc provides both sequential and parallel dense matrix formats, where each process stores its entries in a
column-major array in the usual Fortran style. To create a sequential, dense PETSc matrix, A of dimensions
m by n, the user should call

MatCreateSeqDense(PETSC_COMM_SELF,PetscInt m,PetscInt n,PetscScalar *data,Mat *A);

The variable data enables the user to optionally provide the location of the data for matrix storage (intended
for Fortran users who wish to allocate their own storage space). Most users should merely set data to NULL
for PETSc to control matrix memory allocation. To create a parallel, dense matrix, A, the user should call

48 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

MatCreateDense(MPI_Comm comm,PetscInt m,PetscInt n,PetscInt M,PetscInt N,PetscScalar␣
↪→*data,Mat *A)

The arguments m, n, M, and N, indicate the number of local rows and columns and the number of global rows
and columns, respectively. Either the local or global parameters can be replaced with PETSC_DECIDE, so
that PETSc will determine them. The matrix is stored with a fixed number of rows on each process, given
by m, or determined by PETSc if m is PETSC_DECIDE.

PETSc does not provide parallel dense direct solvers, instead interfacing to external packages that provide
these solvers. Our focus is on sparse iterative solvers.

Block Matrices

Block matrices arise when coupling variables with different meaning, especially when solving problems with
constraints (e.g. incompressible flow) and “multi-physics” problems. Usually the number of blocks is small
and each block is partitioned in parallel. We illustrate for a 3 × 3 system with components labeled a, b, c.
With some numbering of unknowns, the matrix could be written as Aaa Aab Aac

Aba Abb Abc

Aca Acb Acc

 .

There are two fundamentally different ways that this matrix could be stored, as a single assembled sparse
matrix where entries from all blocks are merged together (“monolithic”), or as separate assembled matrices for
each block (“nested”). These formats have different performance characteristics depending on the operation
being performed. In particular, many preconditioners require a monolithic format, but some that are very
effective for solving block systems (see Solving Block Matrices) are more efficient when a nested format is
used. In order to stay flexible, we would like to be able to use the same code to assemble block matrices
in both monolithic and nested formats. Additionally, for software maintainability and testing, especially in
a multi-physics context where different groups might be responsible for assembling each of the blocks, it is
desirable to be able to use exactly the same code to assemble a single block independently as to assemble it
as part of a larger system. To do this, we introduce the four spaces shown in Fig. 2.3.

• The monolithic global space is the space in which the Krylov and Newton solvers operate, with collective
semantics across the entire block system.

• The split global space splits the blocks apart, but each split still has collective semantics.

• The split local space adds ghost points and separates the blocks. Operations in this space can be
performed with no parallel communication. This is often the most natural, and certainly the most
powerful, space for matrix assembly code.

• The monolithic local space can be thought of as adding ghost points to the monolithic global space,
but it is often more natural to use it simply as a concatenation of split local spaces on each process. It
is not common to explicitly manipulate vectors or matrices in this space (at least not during assembly),
but it is a useful for declaring which part of a matrix is being assembled.

The key to format-independent assembly is the function

MatGetLocalSubMatrix(Mat A,IS isrow,IS iscol,Mat *submat);

which provides a “view” submat into a matrix A that operates in the monolithic global space. The submat
transforms from the split local space defined by iscol to the split local space defined by isrow. The
index sets specify the parts of the monolithic local space that submat should operate in. If a nested matrix
format is used, then MatGetLocalSubMatrix() finds the nested block and returns it without making
any copies. In this case, submat is fully functional and has a parallel communicator. If a monolithic
matrix format is used, then MatGetLocalSubMatrix() returns a proxy matrix on PETSC_COMM_SELF

2.2. Matrices 49

PETSc Users Manual, Release 3.14.2

rank 0

rank 2

rank 1

rank 0

rank 1

rank 2

LocalToGlobalMapping

Monolithic Global Monolithic Local

Split Local

GetLocalSubMatrix()

Split Global

GetSubMatrix() / GetSubVector()

LocalToGlobal()

rank 0

rank 1

rank 2

Fig. 2.3: The relationship between spaces used for coupled assembly.

50 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

that does not provide values or implement MatMult(), but does implement MatSetValuesLocal()
and, if isrow,iscol have a constant block size, MatSetValuesBlockedLocal(). Note that although
submat may not be a fully functional matrix and the caller does not even know a priori which communicator
it will reside on, it always implements the local assembly functions (which are not collective). The index
sets isrow,iscol can be obtained using DMCompositeGetLocalISs() if DMComposite is being used.
DMComposite can also be used to create matrices, in which case the MATNEST format can be specified
using -prefix_dm_mat_type nest and MATAIJ can be specified using -prefix_dm_mat_type aij.
See SNES Tutorail ex28 for a simple example using this interface.

2.2.2 Basic Matrix Operations

Table 2.2 summarizes basic PETSc matrix operations. We briefly discuss a few of these routines in more
detail below.

The parallel matrix can multiply a vector with n local entries, returning a vector with m local entries. That
is, to form the product

MatMult(Mat A,Vec x,Vec y);

the vectors x and y should be generated with

VecCreateMPI(MPI_Comm comm,n,N,&x);
VecCreateMPI(MPI_Comm comm,m,M,&y);

By default, if the user lets PETSc decide the number of components to be stored locally (by passing in
PETSC_DECIDE as the second argument to VecCreateMPI() or using VecCreate()), vectors and ma-
trices of the same dimension are automatically compatible for parallel matrix-vector operations.

Along with the matrix-vector multiplication routine, there is a version for the transpose of the matrix,

MatMultTranspose(Mat A,Vec x,Vec y);

There are also versions that add the result to another vector:

MatMultAdd(Mat A,Vec x,Vec y,Vec w);
MatMultTransposeAdd(Mat A,Vec x,Vec y,Vec w);

These routines, respectively, produce w = A∗x+y and w = AT ∗x+y . In C it is legal for the vectors y and
w to be identical. In Fortran, this situation is forbidden by the language standard, but we allow it anyway.

One can print a matrix (sequential or parallel) to the screen with the command

MatView(Mat mat,PETSC_VIEWER_STDOUT_WORLD);

Other viewers can be used as well. For instance, one can draw the nonzero structure of the matrix into the
default X-window with the command

MatView(Mat mat,PETSC_VIEWER_DRAW_WORLD);

Also one can use

MatView(Mat mat,PetscViewer viewer);

where viewer was obtained with PetscViewerDrawOpen(). Additional viewers and options are given
in the MatView() man page and Viewers: Looking at PETSc Objects.

2.2. Matrices 51

https://www.mcs.anl.gov/petsc/petsc-current/src/snes/tutorials/ex28.c.html

PETSc Users Manual, Release 3.14.2

Table 2.3: PETSc Matrix Operations
Function Name Operation
MatAXPY(Mat Y, PetscScalar a, Mat X, MatStructure s); Y = Y + a ∗X
MatMult(Mat A,Vec x, Vec y); y = A ∗ x
MatMultAdd(Mat A,Vec x, Vec y,Vec z); z = y +A ∗ x
MatMultTranspose(Mat A,Vec x, Vec y); y = AT ∗ x
MatMultTransposeAdd(Mat A, Vec x, Vec y, Vec z); z = y +AT ∗ x
MatNorm(Mat A,NormType type, PetscReal *r); r = Atype

MatDiagonalScale(Mat A,Vec l,Vec r); A = diag(l) ∗A ∗ diag(r)
MatScale(Mat A,PetscScalar a); A = a ∗A
MatConvert(Mat A, MatType type, Mat *B); B = A
MatCopy(Mat A, Mat B, MatStructure s); B = A
MatGetDiagonal(Mat A, Vec x); x = diag(A)
MatTranspose(Mat A, MatReuse, Mat* B); B = AT

MatZeroEntries(Mat A); A = 0
MatShift(Mat Y, PetscScalar a); Y = Y + a ∗ I

The NormType argument to MatNorm() is one of NORM_1, NORM_INFINITY, and NORM_FROBENIUS.

2.2.3 Matrix-Free Matrices

Some people like to use matrix-free methods, which do not require explicit storage of the matrix, for the
numerical solution of partial differential equations. To support matrix-free methods in PETSc, one can use
the following command to create a Mat structure without ever actually generating the matrix:

MatCreateShell(MPI_Comm comm,PetscInt m,PetscInt n,PetscInt M,PetscInt N,void *ctx,
↪→Mat *mat);

Here M and N are the global matrix dimensions (rows and columns), m and n are the local matrix dimensions,
and ctx is a pointer to data needed by any user-defined shell matrix operations; the manual page has
additional details about these parameters. Most matrix-free algorithms require only the application of the
linear operator to a vector. To provide this action, the user must write a routine with the calling sequence

UserMult(Mat mat,Vec x,Vec y);

and then associate it with the matrix, mat, by using the command

MatShellSetOperation(Mat mat,MatOperation MATOP_MULT, (void(*)(void)) PetscErrorCode␣
↪→(*UserMult)(Mat,Vec,Vec));

Here MATOP_MULT is the name of the operation for matrix-vector multiplication. Within each user-defined
routine (such as UserMult()), the user should call MatShellGetContext() to obtain the user-defined
context, ctx, that was set by MatCreateShell(). This shell matrix can be used with the iterative linear
equation solvers discussed in the following chapters.

The routine MatShellSetOperation() can be used to set any other matrix operations as well. The
file $PETSC_DIR/include/petscmat.h (source). provides a complete list of matrix operations, which
have the form MATOP_<OPERATION>, where <OPERATION> is the name (in all capital letters) of the user
interface routine (for example, MatMult() → MATOP_MULT). All user-provided functions have the same
calling sequence as the usual matrix interface routines, since the user-defined functions are intended to be
accessed through the same interface, e.g., MatMult(Mat,Vec,Vec) → UserMult(Mat,Vec,Vec). The
final argument for MatShellSetOperation() needs to be cast to a void *, since the final argument
could (depending on the MatOperation) be a variety of different functions.

52 Chapter 2. Programming with PETSc

https://www.mcs.anl.gov/petsc/petsc-current/include/petscmat.h.html

PETSc Users Manual, Release 3.14.2

Note that MatShellSetOperation() can also be used as a “backdoor” means of introducing user-defined
changes in matrix operations for other storage formats (for example, to override the default LU factorization
routine supplied within PETSc for the MATSEQAIJ format). However, we urge anyone who introduces such
changes to use caution, since it would be very easy to accidentally create a bug in the new routine that could
affect other routines as well.

See also Matrix-Free Methods for details on one set of helpful utilities for using the matrix-free approach for
nonlinear solvers.

2.2.4 Other Matrix Operations

In many iterative calculations (for instance, in a nonlinear equations solver), it is important for efficiency
purposes to reuse the nonzero structure of a matrix, rather than determining it anew every time the matrix
is generated. To retain a given matrix but reinitialize its contents, one can employ

MatZeroEntries(Mat A);

This routine will zero the matrix entries in the data structure but keep all the data that indicates where
the nonzeros are located. In this way a new matrix assembly will be much less expensive, since no memory
allocations or copies will be needed. Of course, one can also explicitly set selected matrix elements to zero
by calling MatSetValues().

By default, if new entries are made in locations where no nonzeros previously existed, space will be allocated
for the new entries. To prevent the allocation of additional memory and simply discard those new entries,
one can use the option

MatSetOption(Mat A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);

Once the matrix has been assembled, one can factor it numerically without repeating the ordering or the
symbolic factorization. This option can save some computational time, although it does require that the
factorization is not done in-place.

In the numerical solution of elliptic partial differential equations, it can be cumbersome to deal with Dirichlet
boundary conditions. In particular, one would like to assemble the matrix without regard to boundary
conditions and then at the end apply the Dirichlet boundary conditions. In numerical analysis classes this
process is usually presented as moving the known boundary conditions to the right-hand side and then solving
a smaller linear system for the interior unknowns. Unfortunately, implementing this requires extracting a
large submatrix from the original matrix and creating its corresponding data structures. This process can
be expensive in terms of both time and memory.

One simple way to deal with this difficulty is to replace those rows in the matrix associated with known
boundary conditions, by rows of the identity matrix (or some scaling of it). This action can be done with
the command

MatZeroRows(Mat A,PetscInt numRows,PetscInt rows[],PetscScalar diag_value,Vec x,Vec␣
↪→b),

or equivalently,

MatZeroRowsIS(Mat A,IS rows,PetscScalar diag_value,Vec x,Vec b);

For sparse matrices this removes the data structures for certain rows of the matrix. If the pointer
diag_value is NULL, it even removes the diagonal entry. If the pointer is not null, it uses that given
value at the pointer location in the diagonal entry of the eliminated rows.

One nice feature of this approach is that when solving a nonlinear problem such that at each iteration the
Dirichlet boundary conditions are in the same positions and the matrix retains the same nonzero structure,

2.2. Matrices 53

PETSc Users Manual, Release 3.14.2

the user can call MatZeroRows() in the first iteration. Then, before generating the matrix in the second
iteration the user should call

MatSetOption(Mat A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);

From that point, no new values will be inserted into those (boundary) rows of the matrix.

The functions MatZeroRowsLocal() and MatZeroRowsLocalIS() can also be used if for each process
one provides the Dirichlet locations in the local numbering of the matrix. A drawback of MatZeroRows()
is that it destroys the symmetry of a matrix. Thus one can use

MatZeroRowsColumns(Mat A,PetscInt numRows,PetscInt rows[],PetscScalar diag_value,Vec␣
↪→x,Vec b),

or equivalently,

MatZeroRowsColumnsIS(Mat A,IS rows,PetscScalar diag_value,Vec x,Vec b);

Note that with all of these for a given assembled matrix it can be only called once to update the x and b
vector. It cannot be used if one wishes to solve multiple right hand side problems for the same matrix since
the matrix entries needed for updating the b vector are removed in its first use.

Once the zeroed rows are removed the new matrix has possibly many rows with only a diagonal entry
affecting the parallel load balancing. The PCREDISTRIBUTE preconditioner removes all the zeroed rows
(and associated columns and adjusts the right hand side based on the removed columns) and then rebalances
the resulting rows of smaller matrix across the processes. Thus one can use MatZeroRows() to set the
Dirichlet points and then solve with the preconditioner PCREDISTRIBUTE. Note if the original matrix was
symmetric the smaller solved matrix will also be symmetric.

Another matrix routine of interest is

MatConvert(Mat mat,MatType newtype,Mat *M)

which converts the matrix mat to new matrix, M, that has either the same or different format. Set newtype
to MATSAME to copy the matrix, keeping the same matrix format. See $PETSC_DIR/include/petscmat.
h (source) for other available matrix types; standard ones are MATSEQDENSE, MATSEQAIJ, MATMPIAIJ,
MATSEQBAIJ and MATMPIBAIJ.

In certain applications it may be necessary for application codes to directly access elements of a matrix.
This may be done by using the the command (for local rows only)

MatGetRow(Mat A,PetscInt row, PetscInt *ncols,const PetscInt (*cols)[],const␣
↪→PetscScalar (*vals)[]);

The argument ncols returns the number of nonzeros in that row, while cols and vals returns the column
indices (with indices starting at zero) and values in the row. If only the column indices are needed (and not
the corresponding matrix elements), one can use NULL for the vals argument. Similarly, one can use NULL
for the cols argument. The user can only examine the values extracted with MatGetRow(); the values
cannot be altered. To change the matrix entries, one must use MatSetValues().

Once the user has finished using a row, he or she must call

MatRestoreRow(Mat A,PetscInt row,PetscInt *ncols,PetscInt **cols,PetscScalar **vals);

to free any space that was allocated during the call to MatGetRow().

54 Chapter 2. Programming with PETSc

https://www.mcs.anl.gov/petsc/petsc-current/include/petscmat.h.html

PETSc Users Manual, Release 3.14.2

2.2.5 Partitioning

For almost all unstructured grid computation, the distribution of portions of the grid across the process’s
work load and memory can have a very large impact on performance. In most PDE calculations the grid
partitioning and distribution across the processes can (and should) be done in a “pre-processing” step
before the numerical computations. However, this does not mean it need be done in a separate, sequential
program; rather, it should be done before one sets up the parallel grid data structures in the actual program.
PETSc provides an interface to the ParMETIS (developed by George Karypis; see the PETSc installation
instructions. for directions on installing PETSc to use ParMETIS) to allow the partitioning to be done in
parallel. PETSc does not currently provide directly support for dynamic repartitioning, load balancing by
migrating matrix entries between processes, etc. For problems that require mesh refinement, PETSc uses the
“rebuild the data structure” approach, as opposed to the “maintain dynamic data structures that support
the insertion/deletion of additional vector and matrix rows and columns entries” approach.

Partitioning in PETSc is organized around the MatPartitioning object. One first creates a parallel
matrix that contains the connectivity information about the grid (or other graph-type object) that is to be
partitioned. This is done with the command

MatCreateMPIAdj(MPI_Comm comm,int mlocal,PetscInt n,const PetscInt ia[],const␣
↪→PetscInt ja[],PetscInt *weights,Mat *Adj);

The argument mlocal indicates the number of rows of the graph being provided by the given process, n is
the total number of columns; equal to the sum of all the mlocal. The arguments ia and ja are the row
pointers and column pointers for the given rows; these are the usual format for parallel compressed sparse
row storage, using indices starting at 0, not 1.

1

2 3

4

5

0

0

12

3

Fig. 2.4: Numbering on Simple Unstructured Grid

This, of course, assumes that one has already distributed the grid (graph) information among the processes.
The details of this initial distribution is not important; it could be simply determined by assigning to the
first process the first n0 nodes from a file, the second process the next n1 nodes, etc.

For example, we demonstrate the form of the ia and ja for a triangular grid where we

(1) partition by element (triangle)

• Process 0: mlocal = 2, n = 4, ja ={2,3, 3}, ia = {0,2,3}

2.2. Matrices 55

https://www.mcs.anl.gov/petsc/documentation/installation.html
https://www.mcs.anl.gov/petsc/documentation/installation.html

PETSc Users Manual, Release 3.14.2

• Process 1: mlocal = 2, n = 4, ja ={0, 0,1}, ia ={0,1,3}

Note that elements are not connected to themselves and we only indicate edge connections (in some contexts
single vertex connections between elements may also be included). We use a space above to denote the
transition between rows in the matrix.

and (2) partition by vertex.

• Process 0: mlocal = 3, n = 6, ja ={3,4, 4,5, 3,4,5}, ia ={0, 2, 4, 7}

• Process 1: mlocal = 3, n = 6, ja ={0,2, 4, 0,1,2,3,5, 1,2,4}, ia ={0, 3, 8, 11}.

Once the connectivity matrix has been created the following code will generate the renumbering required for
the new partition

MatPartitioningCreate(MPI_Comm comm,MatPartitioning *part);
MatPartitioningSetAdjacency(MatPartitioning part,Mat Adj);
MatPartitioningSetFromOptions(MatPartitioning part);
MatPartitioningApply(MatPartitioning part,IS *is);
MatPartitioningDestroy(MatPartitioning *part);
MatDestroy(Mat *Adj);
ISPartitioningToNumbering(IS is,IS *isg);

The resulting isg contains for each local node the new global number of that node. The resulting is
contains the new process number that each local node has been assigned to.

Now that a new numbering of the nodes has been determined, one must renumber all the nodes and migrate
the grid information to the correct process. The command

AOCreateBasicIS(isg,NULL,&ao);

generates, see Application Orderings, an AO object that can be used in conjunction with the is and isg to
move the relevant grid information to the correct process and renumber the nodes etc. In this context, the
new ordering is the “application” ordering so AOPetscToApplication() converts old global indices to
new global indices and AOApplicationToPetsc() converts new global indices back to old global indices.

PETSc does not currently provide tools that completely manage the migration and node renumbering, since
it will be dependent on the particular data structure you use to store the grid information and the type of
grid information that you need for your application. We do plan to include more support for this in the
future, but designing the appropriate general user interface and providing a scalable implementation that
can be used for a wide variety of different grids requires a great deal of time.

2.3 KSP: Linear System Solvers

The KSP object is the heart of PETSc, because it provides uniform and efficient access to all of the package’s
linear system solvers, including parallel and sequential, direct and iterative. KSP is intended for solving
systems of the form

Ax = b, (2.1)

where A denotes the matrix representation of a linear operator, b is the right-hand-side vector, and x is the
solution vector. KSP uses the same calling sequence for both direct and iterative solution of a linear system.
In addition, particular solution techniques and their associated options can be selected at runtime.

The combination of a Krylov subspace method and a preconditioner is at the center of most modern numerical
codes for the iterative solution of linear systems. Many textbooks (e.g. [FGN92] [vdV03], or [Saa03]) provide
an overview of the theory of such methods. The KSP package, discussed in Krylov Methods, provides many

56 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

popular Krylov subspace iterative methods; the PC module, described in Preconditioners, includes a variety
of preconditioners.

2.3.1 Using KSP

To solve a linear system with KSP, one must first create a solver context with the command

KSPCreate(MPI_Comm comm,KSP *ksp);

Here comm is the MPI communicator and ksp is the newly formed solver context. Before actually solving
a linear system with KSP, the user must call the following routine to set the matrices associated with the
linear system:

KSPSetOperators(KSP ksp,Mat Amat,Mat Pmat);

The argument Amat, representing the matrix that defines the linear system, is a symbolic placeholder
for any kind of matrix or operator. In particular, KSP does support matrix-free methods. The routine
MatCreateShell() in Matrix-Free Matrices provides further information regarding matrix-free methods.
Typically, the matrix from which the preconditioner is to be constructed, Pmat, is the same as the matrix
that defines the linear system, Amat; however, occasionally these matrices differ (for instance, when a
preconditioning matrix is obtained from a lower order method than that employed to form the linear system
matrix).

Much of the power of KSP can be accessed through the single routine

KSPSetFromOptions(KSP ksp);

This routine accepts the option -help as well as any of the KSP and PC options discussed below. To solve
a linear system, one sets the rhs and solution vectors using and executes the command

KSPSolve(KSP ksp,Vec b,Vec x);

where b and x respectively denote the right-hand-side and solution vectors. On return, the iteration number
at which the iterative process stopped can be obtained using

KSPGetIterationNumber(KSP ksp, PetscInt *its);

Note that this does not state that the method converged at this iteration: it can also have reached the
maximum number of iterations, or have diverged.

Convergence Tests gives more details regarding convergence testing. Note that multiple linear solves can be
performed by the same KSP context. Once the KSP context is no longer needed, it should be destroyed with
the command

KSPDestroy(KSP *ksp);

The above procedure is sufficient for general use of the KSP package. One additional step is required for
users who wish to customize certain preconditioners (e.g., see Block Jacobi and Overlapping Additive Schwarz
Preconditioners) or to log certain performance data using the PETSc profiling facilities (as discussed in
Profiling). In this case, the user can optionally explicitly call

KSPSetUp(KSP ksp);

before calling KSPSolve() to perform any setup required for the linear solvers. The explicit call of this
routine enables the separate monitoring of any computations performed during the set up phase, such as
incomplete factorization for the ILU preconditioner.

2.3. KSP: Linear System Solvers 57

PETSc Users Manual, Release 3.14.2

The default solver within KSP is restarted GMRES, preconditioned for the uniprocess case with ILU(0), and
for the multiprocess case with the block Jacobi method (with one block per process, each of which is solved
with ILU(0)). A variety of other solvers and options are also available. To allow application programmers to
set any of the preconditioner or Krylov subspace options directly within the code, we provide routines that
extract the PC and KSP contexts,

KSPGetPC(KSP ksp,PC *pc);

The application programmer can then directly call any of the PC or KSP routines to modify the corresponding
default options.

To solve a linear system with a direct solver (currently supported by PETSc for sequential matrices, and
by several external solvers through PETSc interfaces (see Using External Linear Solvers)) one may use the
options -ksp_type preonly -pc_type lu (see below).

By default, if a direct solver is used, the factorization is not done in-place. This approach prevents the user
from the unexpected surprise of having a corrupted matrix after a linear solve. The routine PCFactorSe-
tUseInPlace(), discussed below, causes factorization to be done in-place.

2.3.2 Solving Successive Linear Systems

When solving multiple linear systems of the same size with the same method, several options are available.
To solve successive linear systems having the same preconditioner matrix (i.e., the same data structure
with exactly the same matrix elements) but different right-hand-side vectors, the user should simply call
KSPSolve(), multiple times. The preconditioner setup operations (e.g., factorization for ILU) will be done
during the first call to KSPSolve() only; such operations will not be repeated for successive solves.

To solve successive linear systems that have different preconditioner matrices (i.e., the matrix elements
and/or the matrix data structure change), the user must call KSPSetOperators() and KSPSolve() for
each solve. See Using KSP for a description of various flags for KSPSetOperators() that can save work
for such cases.

2.3.3 Krylov Methods

The Krylov subspace methods accept a number of options, many of which are discussed below. First, to set
the Krylov subspace method that is to be used, one calls the command

KSPSetType(KSP ksp,KSPType method);

The type can be one of KSPRICHARDSON, KSPCHEBYSHEV, KSPCG, KSPGMRES, KSPTCQMR, KSPBCGS,
KSPCGS, KSPTFQMR, KSPCR, KSPLSQR, KSPBICG, KSPPREONLY. or others; see KSP Objects or the KSP-
Type man page for more. The KSP method can also be set with the options database command -ksp_type,
followed by one of the options richardson, chebyshev, cg, gmres, tcqmr, bcgs, cgs, tfqmr, cr,
lsqr, bicg, preonly., or others (see KSP Objects or the KSPType man page) There are method-specific
options. For instance, for the Richardson, Chebyshev, and GMRES methods:

KSPRichardsonSetScale(KSP ksp,PetscReal scale);
KSPChebyshevSetEigenvalues(KSP ksp,PetscReal emax,PetscReal emin);
KSPGMRESSetRestart(KSP ksp,PetscInt max_steps);

The default parameter values are damping_factor=1.0, emax=0.01, emin=100.0, and
max_steps=30. The GMRES restart and Richardson damping factor can also be set with the options
-ksp_gmres_restart <n> and -ksp_richardson_scale <factor>.

58 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

The default technique for orthogonalization of the Hessenberg matrix in GMRES is the unmodified (classical)
Gram-Schmidt method, which can be set with

KSPGMRESSetOrthogonalization(KSP ksp,KSPGMRESClassicalGramSchmidtOrthogonalization);

or the options database command -ksp_gmres_classicalgramschmidt. By default this will not use
iterative refinement to improve the stability of the orthogonalization. This can be changed with the option

KSPGMRESSetCGSRefinementType(KSP ksp,KSPGMRESCGSRefinementType type)

or via the options database with

-ksp_gmres_cgs_refinement_type none,ifneeded,always

The values for KSPGMRESCGSRefinementType() are KSP_GMRES_CGS_REFINEMENT_NONE,
KSP_GMRES_CGS_REFINEMENT_IFNEEDED and KSP_GMRES_CGS_REFINEMENT_ALWAYS.

One can also use modified Gram-Schmidt, by using the orthogonalization routine KSPGM-
RESModifiedGramSchmidtOrthogonalization() or by using the command line option -
ksp_gmres_modifiedgramschmidt.

For the conjugate gradient method with complex numbers, there are two slightly different algorithms de-
pending on whether the matrix is Hermitian symmetric or truly symmetric (the default is to assume that it
is Hermitian symmetric). To indicate that it is symmetric, one uses the command

KSPCGSetType(KSP ksp,KSPCGType KSP_CG_SYMMETRIC);

Note that this option is not valid for all matrices.

The LSQR algorithm does not involve a preconditioner; any preconditioner set to work with the KSP object
is ignored if KSPLSQR was selected.

By default, KSP assumes an initial guess of zero by zeroing the initial value for the solution vector that is
given; this zeroing is done at the call to KSPSolve(). To use a nonzero initial guess, the user must call

KSPSetInitialGuessNonzero(KSP ksp,PetscBool flg);

Preconditioning within KSP

Since the rate of convergence of Krylov projection methods for a particular linear system is strongly dependent
on its spectrum, preconditioning is typically used to alter the spectrum and hence accelerate the convergence
rate of iterative techniques. Preconditioning can be applied to the system (1) by

(M−1
L AM−1

R) (MRx) = M−1
L b, (2.2)

where ML and MR indicate preconditioning matrices (or, matrices from which the preconditioner is to be
constructed). If ML = I in (2), right preconditioning results, and the residual of (1),

r ≡ b−Ax = b−AM−1
R MRx,

is preserved. In contrast, the residual is altered for left (MR = I) and symmetric preconditioning, as given
by

rL ≡M−1
L b−M−1

L Ax = M−1
L r.

By default, most KSP implementations use left preconditioning. Some more naturally use other options,
though. For instance, KSPQCG defaults to use symmetric preconditioning and KSPFGMRES uses right pre-
conditioning by default. Right preconditioning can be activated for some methods by using the options
database command -ksp_pc_side right or calling the routine

2.3. KSP: Linear System Solvers 59

PETSc Users Manual, Release 3.14.2

KSPSetPCSide(KSP ksp,PCSide PC_RIGHT);

Attempting to use right preconditioning for a method that does not currently support it results in an error
message of the form

KSPSetUp_Richardson:No right preconditioning for KSPRICHARDSON

We summarize the defaults for the residuals used in KSP convergence monitoring within KSP Objects. Details
regarding specific convergence tests and monitoring routines are presented in the following sections. The
preconditioned residual is used by default for convergence testing of all left-preconditioned KSP methods.
For the conjugate gradient, Richardson, and Chebyshev methods the true residual can be used by the options
database command ksp_norm_type unpreconditioned or by calling the routine

KSPSetNormType(KSP ksp,KSP_NORM_UNPRECONDITIONED);

Table 2.4: KSP Objects
Method KSPType Options Database Name
Richardson KSPRICHARDSON richardson
Chebyshev KSPCHEBYSHEV chebyshev
Conjugate Gradient [HS52] KSPCG cg
Pipelined Conjugate Gradients [GV14] KSPPIPECG pipecg
Pipelined Conjugate Gradients (Gropp) KSPGROPPCG groppcg
Pipelined Conjugate Gradients with Residual Replacement KSPPIPECGRR pipecgrr
Conjugate Gradients for the Normal Equations KSPCGNE cgne
Flexible Conjugate Gradients [Not00] KSPFCG fcg
Pipelined, Flexible Conjugate Gradients [SSM16] KSPPIPEFCG pipefcg
Conjugate Gradients for Least Squares KSPCGLS cgls
Conjugate Gradients with Constraint (1) KSPNASH nash
Conjugate Gradients with Constraint (2) KSPSTCG stcg
Conjugate Gradients with Constraint (3) KSPGLTR gltr
Conjugate Gradients with Constraint (4) KSPQCG qcg
BiConjugate Gradient KSPBICG bicg
BiCGSTAB [vandVorst92] KSPBCGS bcgs
Improved BiCGSTAB KSPIBCGS ibcgs
Flexible BiCGSTAB KSPFBCGS fbcgs
Flexible BiCGSTAB (variant) KSPFBCGSR fbcgsr
Enhanced BiCGSTAB(L) KSPBCGSL bcgsl
Minimal Residual Method [PS75] KSPMINRES minres
Generalized Minimal Residual [SS86] KSPGMRES gmres
Flexible Generalized Minimal Residual [Saa93] KSPFGMRES fgmres
Deflated Generalized Minimal Residual KSPDGMRES dgmres
Pipelined Generalized Minimal Residual [GAMV13] KSPPGMRES pgmres
Pipelined, Flexible Generalized Minimal Residual [SSM16] KSPPIPEFGMRES pipefgmres
Generalized Minimal Residual with Accelerated Restart KSPLGMRES lgmres
Conjugate Residual [EES83] KSPCR cr
Generalized Conjugate Residual KSPGCR gcr
Pipelined Conjugate Residual KSPPIPECR pipecr
Pipelined, Flexible Conjugate Residual [SSM16] KSPPIPEGCR pipegcr
FETI-DP KSPFETIDP fetidp
Conjugate Gradient Squared [Son89] KSPCGS cgs
Transpose-Free Quasi-Minimal Residual (1) [Fre93] KSPTFQMR tfqmr

Continued on next page

60 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

Table 2.4 – continued from previous page
Method KSPType Options Database Name
Transpose-Free Quasi-Minimal Residual (2) KSPTCQMR tcqmr
Least Squares Method KSPLSQR lsqr
Symmetric LQ Method [PS75] KSPSYMMLQ symmlq
TSIRM KSPTSIRM tsirm
Python Shell KSPPYTHON python
Shell for no KSP method KSPPREONLY preonly

Note: the bi-conjugate gradient method requires application of both the matrix and its transpose plus the
preconditioner and its transpose. Currently not all matrices and preconditioners provide this support and
thus the KSPBICG cannot always be used.

Note: PETSc implements the FETI-DP (Finite Element Tearing and Interconnecting Dual-Primal) method
as an implementation of KSP since it recasts the original problem into a contstrained minimization one
with Lagrange multipliers. The only matrix type supported is MATIS. Support for saddle point problems is
provided. See the man page for KSPFETIDP for further details.

Convergence Tests

The default convergence test, KSPConvergedDefault(), is based on the l2-norm of the residual. Conver-
gence (or divergence) is decided by three quantities: the decrease of the residual norm relative to the norm
of the right hand side, rtol, the absolute size of the residual norm, atol, and the relative increase in the
residual, dtol. Convergence is detected at iteration k if

‖rk‖2 < max(rtol ∗ ‖b‖2, atol),

where rk = b−Axk. Divergence is detected if

‖rk‖2 > dtol ∗ ‖b‖2.

These parameters, as well as the maximum number of allowable iterations, can be set with the routine

KSPSetTolerances(KSP ksp,PetscReal rtol,PetscReal atol,PetscReal dtol,PetscInt␣
↪→maxits);

The user can retain the default value of any of these parameters by specifying PETSC_DEFAULT as the
corresponding tolerance; the defaults are rtol=1e-5, atol=1e-50, dtol=1e5, and maxits=1e4. These
parameters can also be set from the options database with the commands -ksp_rtol <rtol>, -ksp_atol
<atol>, -ksp_divtol <dtol>, and -ksp_max_it <its>.

In addition to providing an interface to a simple convergence test, KSP allows the application programmer
the flexibility to provide customized convergence-testing routines. The user can specify a customized routine
with the command

KSPSetConvergenceTest(KSP ksp,PetscErrorCode (*test)(KSP ksp,PetscInt it,PetscReal␣
↪→rnorm, KSPConvergedReason *reason,void *ctx),void *ctx,PetscErrorCode␣
↪→(*destroy)(void *ctx));

The final routine argument, ctx, is an optional context for private data for the user-defined convergence
routine, test. Other test routine arguments are the iteration number, it, and the residual’s l2 norm,
rnorm. The routine for detecting convergence, test, should set reason to positive for convergence, 0 for
no convergence, and negative for failure to converge. A full list of possible values for KSPConvergedReason
is given in include/petscksp.h. You can use KSPGetConvergedReason() after KSPSolve() to see
why convergence/divergence was detected.

2.3. KSP: Linear System Solvers 61

PETSc Users Manual, Release 3.14.2

Convergence Monitoring

By default, the Krylov solvers run silently without displaying information about the iterations. The user can
indicate that the norms of the residuals should be displayed by using -ksp_monitor within the options
database. To display the residual norms in a graphical window (running under X Windows), one should
use -ksp_monitor_lg_residualnorm [x,y,w,h], where either all or none of the options must be
specified. Application programmers can also provide their own routines to perform the monitoring by using
the command

KSPMonitorSet(KSP ksp,PetscErrorCode (*mon)(KSP ksp,PetscInt it,PetscReal rnorm,void␣
↪→*ctx),void *ctx,PetscErrorCode (*mondestroy)(void**));

The final routine argument, ctx, is an optional context for private data for the user-defined monitoring rou-
tine, mon. Other mon routine arguments are the iteration number (it) and the residual’s l2 norm (rnorm). A
helpful routine within user-defined monitors is PetscObjectGetComm((PetscObject)ksp,MPI_Comm
*comm), which returns in comm the MPI communicator for the KSP context. See Writing PETSc Programs
for more discussion of the use of MPI communicators within PETSc.

Several monitoring routines are supplied with PETSc, including

KSPMonitorDefault(KSP,PetscInt,PetscReal, void *);
KSPMonitorSingularValue(KSP,PetscInt,PetscReal,void *);
KSPMonitorTrueResidualNorm(KSP,PetscInt,PetscReal, void *);

The default monitor simply prints an estimate of the l2-norm of the residual at each iteration. The rou-
tine KSPMonitorSingularValue() is appropriate only for use with the conjugate gradient method or
GMRES, since it prints estimates of the extreme singular values of the preconditioned operator at each
iteration. Since KSPMonitorTrueResidualNorm() prints the true residual at each iteration by actually
computing the residual using the formula r = b−Ax, the routine is slow and should be used only for testing
or convergence studies, not for timing. These monitors may be accessed with the command line options
-ksp_monitor, -ksp_monitor_singular_value, and -ksp_monitor_true_residual.

To employ the default graphical monitor, one should use the commands

PetscDrawLG lg;
KSPMonitorLGResidualNormCreate(MPI_Comm comm,char *display,char *title,PetscInt x,
↪→PetscInt y,PetscInt w,PetscInt h,PetscDrawLG *lg);
KSPMonitorSet(KSP ksp,KSPMonitorLGResidualNorm,lg,0);

When no longer needed, the line graph should be destroyed with the command

PetscDrawLGDestroy(PetscDrawLG *lg);

The user can change aspects of the graphs with the PetscDrawLG*() and PetscDrawAxis*()
routines. One can also access this functionality from the options database with the command -
ksp_monitor_lg_residualnorm [x,y,w,h]. , where x, y, w, h are the optional location and
size of the window.

One can cancel hardwired monitoring routines for KSP at runtime with -ksp_monitor_cancel.

Unless the Krylov method converges so that the residual norm is small, say 10−10, many of the final digits
printed with the -ksp_monitor option are meaningless. Worse, they are different on different machines;
due to different round-off rules used by, say, the IBM RS6000 and the Sun SPARC. This makes testing
between different machines difficult. The option -ksp_monitor_short causes PETSc to print fewer of
the digits of the residual norm as it gets smaller; thus on most of the machines it will always print the same
numbers making cross system testing easier.

62 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

Understanding the Operator’s Spectrum

Since the convergence of Krylov subspace methods depends strongly on the spectrum (eigenvalues) of the
preconditioned operator, PETSc has specific routines for eigenvalue approximation via the Arnoldi or Lanczos
iteration. First, before the linear solve one must call

KSPSetComputeEigenvalues(KSP ksp,PETSC_TRUE);

Then after the KSP solve one calls

KSPComputeEigenvalues(KSP ksp,PetscInt n,PetscReal *realpart,PetscReal *complexpart,
↪→PetscInt *neig);

Here, n is the size of the two arrays and the eigenvalues are inserted into those two arrays. neig is the
number of eigenvalues computed; this number depends on the size of the Krylov space generated during the
linear system solution, for GMRES it is never larger than the restart parameter. There is an additional
routine

KSPComputeEigenvaluesExplicitly(KSP ksp, PetscInt n,PetscReal *realpart,PetscReal␣
↪→*complexpart);

that is useful only for very small problems. It explicitly computes the full representation of the preconditioned
operator and calls LAPACK to compute its eigenvalues. It should be only used for matrices of size up to a
couple hundred. The PetscDrawSP*() routines are very useful for drawing scatter plots of the eigenvalues.

The eigenvalues may also be computed and displayed graphically with the options data base
commands -ksp_view_eigenvalues draw and -ksp_view_eigenvalues_explicitly draw.
Or they can be dumped to the screen in ASCII text via -ksp_view_eigenvalues and -
ksp_view_eigenvalues_explicitly.

Other KSP Options

To obtain the solution vector and right hand side from a KSP context, one uses

KSPGetSolution(KSP ksp,Vec *x);
KSPGetRhs(KSP ksp,Vec *rhs);

During the iterative process the solution may not yet have been calculated or it may be stored in a different
location. To access the approximate solution during the iterative process, one uses the command

KSPBuildSolution(KSP ksp,Vec w,Vec *v);

where the solution is returned in v. The user can optionally provide a vector in w as the location to store
the vector; however, if w is NULL, space allocated by PETSc in the KSP context is used. One should not
destroy this vector. For certain KSP methods, (e.g., GMRES), the construction of the solution is expensive,
while for many others it doesn’t evenrequire a vector copy.

Access to the residual is done in a similar way with the command

KSPBuildResidual(KSP ksp,Vec t,Vec w,Vec *v);

Again, for GMRES and certain other methods this is an expensive operation.

2.3. KSP: Linear System Solvers 63

PETSc Users Manual, Release 3.14.2

2.3.4 Preconditioners

As discussed in Preconditioning within KSP, Krylov subspace methods are typically used in conjunction
with a preconditioner. To employ a particular preconditioning method, the user can either select it from the
options database using input of the form -pc_type <methodname> or set the method with the command

PCSetType(PC pc,PCType method);

In PETSc Preconditioners (partial list) we summarize the basic preconditioning methods supported in
PETSc. See the PCType manual page for a complete list. The PCSHELL preconditioner uses a specific,
application-provided preconditioner. The direct preconditioner, PCLU , is, in fact, a direct solver for the lin-
ear system that uses LU factorization. PCLU is included as a preconditioner so that PETSc has a consistent
interface among direct and iterative linear solvers.

Table 2.5: PETSc Preconditioners (partial list)
Method PCType Options Database Name
Jacobi PCJACOBI jacobi
Block Jacobi PCBJACOBI bjacobi
SOR (and SSOR) PCSOR sor
SOR with Eisenstat trick PCEISENSTAT eisenstat
Incomplete Cholesky PCICC icc
Incomplete LU PCILU ilu
Additive Schwarz PCASM asm
Generalized Additive Schwarz PCGASM gasm
Algebraic Multigrid PCGAMG gamg
Balancing Domain Decomposition by Constraints PCBDDC bddc
Linear solver PCKSP ksp
Combination of preconditioners PCCOMPOSITE composite
LU PCLU lu
Cholesky PCCHOLESKY cholesky
No preconditioning PCNONE none
Shell for user-defined PC PCSHELL shell

Each preconditioner may have associated with it a set of options, which can be set with routines and
options database commands provided for this purpose. Such routine names and commands are all of the
form PC<TYPE><Option> and -pc_<type>_<option> [value]. A complete list can be found by
consulting the PCType manual page; we discuss just a few in the sections below.

ILU and ICC Preconditioners

Some of the options for ILU preconditioner are

PCFactorSetLevels(PC pc,PetscInt levels);
PCFactorSetReuseOrdering(PC pc,PetscBool flag);
PCFactorSetDropTolerance(PC pc,PetscReal dt,PetscReal dtcol,PetscInt dtcount);
PCFactorSetReuseFill(PC pc,PetscBool flag);
PCFactorSetUseInPlace(PC pc,PetscBool flg);
PCFactorSetAllowDiagonalFill(PC pc,PetscBool flg);

When repeatedly solving linear systems with the same KSP context, one can reuse some information computed
during the first linear solve. In particular, PCFactorSetReuseOrdering() causes the ordering (for
example, set with -pc_factor_mat_ordering_type order) computed in the first factorization to be
reused for later factorizations. PCFactorSetUseInPlace() is often used with PCASM or PCBJACOBI

64 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

when zero fill is used, since it reuses the matrix space to store the incomplete factorization it saves memory
and copying time. Note that in-place factorization is not appropriate with any ordering besides natural and
cannot be used with the drop tolerance factorization. These options may be set in the database with

• -pc_factor_levels <levels>

• -pc_factor_reuse_ordering

• -pc_factor_reuse_fill

• -pc_factor_in_place

• -pc_factor_nonzeros_along_diagonal

• -pc_factor_diagonal_fill

See Memory Allocation for Sparse Matrix Factorization for information on preallocation of memory for
anticipated fill during factorization. By alleviating the considerable overhead for dynamic memory allocation,
such tuning can significantly enhance performance.

PETSc supports incomplete factorization preconditioners for several matrix types for sequential matrices
(for example MATSEQAIJ, MATSEQBAIJ, and MATSEQSBAIJ).

SOR and SSOR Preconditioners

PETSc only provides only a sequential SOR preconditioner; it can only be used with sequential matrices or
as the subblock preconditioner when using block Jacobi or ASM preconditioning (see below).

The options for SOR preconditioning with PCSOR are

PCSORSetOmega(PC pc,PetscReal omega);
PCSORSetIterations(PC pc,PetscInt its,PetscInt lits);
PCSORSetSymmetric(PC pc,MatSORType type);

The first of these commands sets the relaxation factor for successive over (under) relaxation. The
second command sets the number of inner iterations its and local iterations lits (the number
of smoothing sweeps on a process before doing a ghost point update from the other processes) to
use between steps of the Krylov space method. The total number of SOR sweeps is given by
its*lits. The third command sets the kind of SOR sweep, where the argument type can be
one of SOR_FORWARD_SWEEP, SOR_BACKWARD_SWEEP or SOR_SYMMETRIC_SWEEP, the default being
SOR_FORWARD_SWEEP. Setting the type to be SOR_SYMMETRIC_SWEEP produces the SSOR method. In
addition, each process can locally and independently perform the specified variant of SOR with the types
SOR_LOCAL_FORWARD_SWEEP, SOR_LOCAL_BACKWARD_SWEEP, and SOR_LOCAL_SYMMETRIC_SWEEP.
These variants can also be set with the options -pc_sor_omega <omega>, -pc_sor_its <its>,
-pc_sor_lits <lits>, -pc_sor_backward, -pc_sor_symmetric, -pc_sor_local_forward, -
pc_sor_local_backward, and -pc_sor_local_symmetric.

The Eisenstat trick [Eis81] for SSOR preconditioning can be employed with the method PCEISEN-
STAT (-pc_type eisenstat). By using both left and right preconditioning of the linear sys-
tem, this variant of SSOR requires about half of the floating-point operations for conventional SSOR.
The option -pc_eisenstat_no_diagonal_scaling) (or the routine PCEisenstatSetNoDiago-
nalScaling()) turns off diagonal scaling in conjunction with Eisenstat SSOR method, while the op-
tion -pc_eisenstat_omega <omega> (or the routine PCEisenstatSetOmega(PC pc,PetscReal
omega)) sets the SSOR relaxation coefficient, omega, as discussed above.

2.3. KSP: Linear System Solvers 65

PETSc Users Manual, Release 3.14.2

LU Factorization

The LU preconditioner provides several options. The first, given by the command

PCFactorSetUseInPlace(PC pc,PetscBool flg);

causes the factorization to be performed in-place and hence destroys the original matrix. The options
database variant of this command is -pc_factor_in_place. Another direct preconditioner option is
selecting the ordering of equations with the command -pc_factor_mat_ordering_type <ordering>.
The possible orderings are

• MATORDERINGNATURAL - Natural

• MATORDERINGND - Nested Dissection

• MATORDERING1WD - One-way Dissection

• MATORDERINGRCM - Reverse Cuthill-McKee

• MATORDERINGQMD - Quotient Minimum Degree

These orderings can also be set through the options database by specifying one of the following: -
pc_factor_mat_ordering_type natural, or nd, or 1wd, or rcm, or qmd. In addition, see MatGe-
tOrdering(), discussed in Matrix Factorization.

The sparse LU factorization provided in PETSc does not perform pivoting for numerical stability (since they
are designed to preserve nonzero structure), and thus occasionally a LU factorization will fail with a zero
pivot when, in fact, the matrix is non-singular. The option -pc_factor_nonzeros_along_diagonal
<tol> will often help eliminate the zero pivot, by preprocessing the column ordering to remove small values
from the diagonal. Here, tol is an optional tolerance to decide if a value is nonzero; by default it is 1.e-10.

In addition, Memory Allocation for Sparse Matrix Factorization provides information on preallocation of
memory for anticipated fill during factorization. Such tuning can significantly enhance performance, since it
eliminates the considerable overhead for dynamic memory allocation.

Block Jacobi and Overlapping Additive Schwarz Preconditioners

The block Jacobi and overlapping additive Schwarz methods in PETSc are supported in parallel; however,
only the uniprocess version of the block Gauss-Seidel method is currently in place. By default, the PETSc
implementations of these methods employ ILU(0) factorization on each individual block (that is, the default
solver on each subblock is PCType=PCILU, KSPType=KSPPREONLY); the user can set alternative linear
solvers via the options -sub_ksp_type and -sub_pc_type. In fact, all of the KSP and PC options can
be applied to the subproblems by inserting the prefix -sub_ at the beginning of the option name. These
options database commands set the particular options for all of the blocks within the global problem. In
addition, the routines

PCBJacobiGetSubKSP(PC pc,PetscInt *n_local,PetscInt *first_local,KSP **subksp);
PCASMGetSubKSP(PC pc,PetscInt *n_local,PetscInt *first_local,KSP **subksp);

extract the KSP context for each local block. The argument n_local is the number of blocks on the calling
process, and first_local indicates the global number of the first block on the process. The blocks are
numbered successively by processes from zero through bg − 1, where bg is the number of global blocks. The
array of KSP contexts for the local blocks is given by subksp. This mechanism enables the user to set
different solvers for the various blocks. To set the appropriate data structures, the user must explicitly call
KSPSetUp() before calling PCBJacobiGetSubKSP() or PCASMGetSubKSP(). For further details, see
KSP Tutorial ex7 or KSP Tutorial ex8.

66 Chapter 2. Programming with PETSc

https://www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/tutorials/ex7.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/tutorials/ex8.c.html

PETSc Users Manual, Release 3.14.2

The block Jacobi, block Gauss-Seidel, and additive Schwarz preconditioners allow the user to set the number
of blocks into which the problem is divided. The options database commands to set this value are -
pc_bjacobi_blocks n and -pc_bgs_blocks n, and, within a program, the corresponding routines
are

PCBJacobiSetTotalBlocks(PC pc,PetscInt blocks,PetscInt *size);
PCASMSetTotalSubdomains(PC pc,PetscInt n,IS *is,IS *islocal);
PCASMSetType(PC pc,PCASMType type);

The optional argument size is an array indicating the size of each block. Currently, for certain parallel
matrix formats, only a single block per process is supported. However, the MATMPIAIJ and MATMPIBAIJ
formats support the use of general blocks as long as no blocks are shared among processes. The is argument
contains the index sets that define the subdomains.

The object PCASMType is one of PC_ASM_BASIC, PC_ASM_INTERPOLATE, PC_ASM_RESTRICT,
orPC_ASM_NONE and may also be set with the options database -pc_asm_type [basic, interpo-
late, restrict, none]. The type PC_ASM_BASIC (or -pc_asm_type basic) corresponds to the
standard additive Schwarz method that uses the full restriction and interpolation operators. The type
PC_ASM_RESTRICT (or -pc_asm_type restrict) uses a full restriction operator, but during the inter-
polation process ignores the off-process values. Similarly, PC_ASM_INTERPOLATE (or -pc_asm_type in-
terpolate) uses a limited restriction process in conjunction with a full interpolation, while PC_ASM_NONE
(or -pc_asm_type none) ignores off-process values for both restriction and interpolation. The ASM
types with limited restriction or interpolation were suggested by Xiao-Chuan Cai and Marcus Sarkis [CS97].
PC_ASM_RESTRICT is the PETSc default, as it saves substantial communication and for many problems has
the added benefit of requiring fewer iterations for convergence than the standard additive Schwarz method.

The user can also set the number of blocks and sizes on a per-process basis with the commands

PCBJacobiSetLocalBlocks(PC pc,PetscInt blocks,PetscInt *size);
PCASMSetLocalSubdomains(PC pc,PetscInt N,IS *is,IS *islocal);

For the ASM preconditioner one can use the following command to set the overlap to compute in constructing
the subdomains.

PCASMSetOverlap(PC pc,PetscInt overlap);

The overlap defaults to 1, so if one desires that no additional overlap be computed beyond what may
have been set with a call to PCASMSetTotalSubdomains() or PCASMSetLocalSubdomains(), then
overlap must be set to be 0. In particular, if one does not explicitly set the subdomains in an application
code, then all overlap would be computed internally by PETSc, and using an overlap of 0 would result in
an ASM variant that is equivalent to the block Jacobi preconditioner. Note that one can define initial index
sets is with any overlap via PCASMSetTotalSubdomains() or PCASMSetLocalSubdomains(); the
routine PCASMSetOverlap() merely allows PETSc to extend that overlap further if desired.

PCGASM is an experimental generalization of PCASM that allows the user to specify subdomains that span
multiple MPI ranks. This can be useful for problems where small subdomains result in poor convergence.
To be effective, the multirank subproblems must be solved using a sufficient strong subsolver, such as LU,
for which SuperLU_DIST or a similar parallel direct solver could be used; other choices may include a
multigrid solver on the subdomains.

The interface for PCGASM is similar to that of PCASM. In particular, PCGASMType is one of PC_GASM_BASIC,
PC_GASM_INTERPOLATE, PC_GASM_RESTRICT, PC_GASM_NONE. These options have the same meaning
as with PCASM and may also be set with the options database -pc_gasm_type [basic, interpolate,
restrict, none].

Unlike PCASM, however, PCGASM allows the user to define subdomains that span multiple MPI ranks. The
simplest way to do this is using a call to PCGASMSetTotalSubdomains(PC pc,PetscPetscInt N) with
the total number of subdomains N that is smaller than the MPI communicator size. In this case PCGASM

2.3. KSP: Linear System Solvers 67

PETSc Users Manual, Release 3.14.2

will coalesce size/N concecutive single-rank subdomains into a single multi-rank subdomain. The single-
rank subdomains contain the degrees of freedom corresponding to the locally-owned rows of the PCGASM
preconditioning matrix – these are the subdomains PCASM and PCGASM use by default.

Each of the multirank subdomain subproblems is defined on the subcommunicator that contains the coalesced
PCGASM ranks. In general this might not result in a very good subproblem if the single-rank problems
corresponding to the coalesced ranks are not very strongly connected. In the future this will be addressed
with a hierarchical partitioner that generates well-connected coarse subdomains first before subpartitioning
them into the single-rank subdomains.

In the meantime the user can provide his or her own multi-rank subdomains by call-
ingPCGASMSetSubdomains(PC,IS[],IS[]) where each of the IS objects on the list defines the inner
(without the overlap) or the outer (including the overlap) subdomain on the subcommunicator of the IS
object. A helper subroutine PCGASMCreateSubdomains2D() is similar to PCASM’s but is capable of con-
structing multi-rank subdomains that can be then used with PCGASMSetSubdomains(). An alternative
way of creating multi-rank subdomains is by using the underlying DM object, if it is capable of generating
such decompositions via DMCreateDomainDecomposition(). Ordinarily the decomposition specified
by the user via PCGASMSetSubdomains() takes precedence, unless PCGASMSetUseDMSubdomains()
instructs PCGASM to prefer DM-created decompositions.

Currently there is no support for increasing the overlap of multi-rank subdomains viaPCGASMSetOverlap()
– this functionality works only for subdomains that fit within a single MPI rank, exactly as in PCASM.

Examples of the described PCGASM usage can be found in KSP Tutorial ex62. In particular,
runex62_superlu_dist illustrates the use of SuperLU_DIST as the subdomain solver on coalesced
multi-rank subdomains. The runex62_2D_* examples illustrate the use of PCGASMCreateSubdo-
mains2D().

Algebraic Multigrid (AMG) Preconditioners

PETSc has a native algebraic multigrid preconditioner PCGAMG – gamg – and interfaces to two external AMG
packages: hypre and ML. Hypre is relatively monolithic in that a PETSc matrix is into a hypre matrix and
then hypre is called to do the entire solve. ML is more modular in that PETSc only has ML generate the coarse
grid spaces (columns of the prolongation operator), which is core of an AMG method, and then constructs a
PCMG with Galerkin coarse grid operator construction. GAMG is designed from the beginning to be modular,
to allow for new components to be added easily and also populates a multigrid preconditioner PCMG so generic
multigrid parameters are used. PETSc provides a fully supported (smoothed) aggregation AMG, (-pc_type
gamg -pc_gamg_type agg or PCSetType(pc,PCGAMG) and PCGAMGSetType(pc,PCGAMGAGG), as
well as reference implementations of a classical AMG method (-pc_gamg_type classical), a hybrid
geometric AMG method (-pc_gamg_type geo), and a 2.5D AMG method DofColumns [ISG15]. GAMG
does require the use of (MPI)AIJ matrices. For instance, BAIJ matrices are not supported. One can use
AIJ instead of BAIJ without changing any code other than the constructor (or the -mat_type from the
command line). For instance, MatSetValuesBlocked works with AIJ matrices.

GAMG provides unsmoothed aggregation (-pc_gamg_agg_nsmooths 0) and smoothed aggregation (-
pc_gamg_agg_nsmooths 1 or PCGAMGSetNSmooths(pc,1)). Smoothed aggregation (SA) is recom-
mended for symmetric positive definite systems. Unsmoothed aggregation can be useful for asymmetric
problems and problems where highest eigen estimates are problematic. If poor convergence rates are ob-
served using the smoothed version one can test unsmoothed aggregation.

Eigenvalue estimates: The parameters for the KSP eigen estimator, use for SA, can be set with -
pc_gamg_esteig_ksp_max_it and -pc_gamg_esteig_ksp_type. For example CG generally con-
verges to the highest eigenvalue fast than GMRES (the default for KSP) if your problem is symmet-
ric positive definite. One can specify CG with -pc_gamg_esteig_ksp_type cg. The default for -
pc_gamg_esteig_ksp_max_it is 10, which we have found is pretty safe with a (default) safety factor
of 1.1. One can specify the range of real eigenvalues, in the same way that one can for Chebyshev KSP

68 Chapter 2. Programming with PETSc

https://www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/tutorials/ex62.c.html

PETSc Users Manual, Release 3.14.2

solvers (smoothers), with -pc_gamg_eigenvalues <emin,emax>. GAMG sets the MG smoother type
to chebyshev by default. By default, GAMG uses its eigen estimate, if it has one, for Chebyshev smoothers
if the smoother uses Jacobi preconditioning. This can be overridden with -pc_gamg_use_sa_esteig
<true,false>.

AMG methods requires knowledge of the number of degrees of freedom per vertex, the default is one (a
scalar problem). Vector problems like elasticity should set the block size of the matrix appropriately with
-mat_block_size bs or MatSetBlockSize(mat,bs). Equations must be ordered in “vertex-major”
ordering (e.g., x1, y1, z1, x2, y2, ...).

Near null space: Smoothed aggregation requires an explicit representation of the (near) null space of
the operator for optimal performance. One can provide an orthonormal set of null space vectors with
MatSetNearNullSpace(). The vector of all ones is the default, for each variable given by the block size
(e.g., the translational rigid body modes). For elasticity, where rotational rigid body modes are required to
complete the near null space you can use MatNullSpaceCreateRigidBody() to create the null space
vectors and then MatSetNearNullSpace().

Coarse grid data model: The GAMG framework provides for reducing the number of active processes on
coarse grids to reduce communication costs when there is not enough parallelism to keep relative commu-
nication costs down. Most AMG solver reduce to just one active process on the coarsest grid (the PETSc
MG framework also supports redundantly solving the coarse grid on all processes to potentially reduce
communication costs), although this forcing to one process can be overridden if one wishes to use a paral-
lel coarse grid solver. GAMG generalizes this by reducing the active number of processes on other coarse
grids as well. GAMG will select the number of active processors by fitting the desired number of equa-
tion per process (set with -pc_gamg_process_eq_limit <50>,) at each level given that size of each
level. If Pi < P processors are desired on a level i then the first Pi ranks are populated with the grid and
the remaining are empty on that grid. One can, and probably should, repartition the coarse grids with
-pc_gamg_repartition <true>,, otherwise an integer process reduction factor (q) is selected and the
equations on the first q processes are move to process 0, and so on. As mentioned multigrid generally coarsens
the problem until it is small enough to be solved with an exact solver (eg, LU or SVD) in a relatively small
time. GAMG will stop coarsening when the number of equation on a grid falls below at threshold give by
-pc_gamg_coarse_eq_limit <50>,.

Coarse grid parameters: There are several options to provide parameters to the coarsening algorithm and
parallel data layout. Run a code that uses GAMG with -help to get full listing of GAMG parameters with
short parameter descriptions. The rate of coarsening is critical in AMG performance – too slow of coarsening
will result in an overly expensive solver per iteration and too fast coarsening will result in decrease in the
convergence rate. -pc_gamg_threshold <0> and -pc_gamg_square_graph <1>, are the primary
parameters that control coarsening rates, which is very important for AMG performance. A greedy maximal
independent set (MIS) algorithm is used in coarsening. Squaring the graph implements so called MIS-2, the
root vertex in an aggregate is more than two edges away from another root vertex, instead of more than
one in MIS. The threshold parameter sets a normalized threshold for which edges are removed from the MIS
graph, thereby coarsening slower. Zero will keep all non-zero edges, a negative number will keep zero edges,
a positive number will drop small edges. Typical finite threshold values are in the range of 0.01−0.05. There
are additional parameters for changing the weights on coarse grids. Note, the parallel algorithm requires
symmetric weights/matrix. You must use -pc_gamg_sym_graph <true> to symmetrize the graph if
your problem is not symmetric.

Trouble shooting algebraic multigrid methods: If GAMG, ML, or hypre does not perform well the
first thing to try is one of the other methods. Often the default parameters or just the strengths of different
algorithms can fix performance problems or provide useful information to guide further debugging. There are
several sources of poor performance of AMG solvers and often special purpose methods must be developed to
achieve the full potential of multigrid. To name just a few sources of performance degradation that may not
be fixed with parameters in PETSc currently: non-elliptic operators, curl/curl operators, highly stretched
grids or highly anisotropic problems, large jumps in material coefficients with complex geometry (AMG
is particularly well suited to jumps in coefficients but it is not a perfect solution), highly incompressible

2.3. KSP: Linear System Solvers 69

PETSc Users Manual, Release 3.14.2

elasticity, not to mention ill-posed problems, and many others. For Grad-Div and Curl-Curl operators,
you may want to try the Auxiliary-space Maxwell Solver (AMS, -pc_type hypre -pc_hypre_type
ams) or the Auxiliary-space Divergence Solver (ADS, -pc_type hypre -pc_hypre_type ads) solvers.
These solvers need some additional information on the underlying mesh; specifically, AMS needs the discrete
gradient operator, which can be specified via PCHYPRESetDiscreteGradient(). In addition to the
discrete gradient, ADS also needs the specification of the discrete curl operator, which can be set using
PCHYPRESetDiscreteCurl().

I am converging slowly, what do I do? AMG methods are sensitive to coarsening rates and methods; for
GAMG use -pc_gamg_threshold <x> to regulate coarsening rates and PCGAMGSetThreshold, higher
values decrease coarsening rate. Squaring the graph is the second mechanism for increasing coarsening rate.
Use -pc_gamg_square_graph <N>,, or PCGAMGSetSquareGraph(pc,N), to square the graph on
the finest N levels. A high threshold (e.g., x = 0.08) will result in an expensive but potentially powerful
preconditioner, and a low threshold (e.g., x = 0.0) will result in faster coarsening, fewer levels, cheaper
solves, and generally worse convergence rates.

One can run with -info and grep for “GAMG” to get some statistics on each level, which can be used to
see if you are coarsening at an appropriate rate. With smoothed aggregation you generally want to coarse at
about a rate of 3:1 in each dimension. Coarsening too slow will result in large numbers of non-zeros per row
on coarse grids (this is reported). The number of non-zeros can go up very high, say about 300 (times the
degrees-of-freedom per vertex) on a 3D hex mesh. One can also look at the grid complexity, which is also
reported (the ration of the total number of matrix entries for all levels to the number of matrix entries on
the fine level). Grid complexity should be well under 2.0 and preferably around 1.3 or lower. If convergence
is poor and the Galerkin coarse grid construction is much smaller than the time for each solve then one can
safely decrease the coarsening rate. -pc_gamg_threshold 0.0 is the simplest and most robust option, and
is recommended if poor convergence rates are observed, at least until the source of the problem is discovered.
In conclusion, if convergence is slow then decreasing the coarsening rate (increasing the threshold) should
be tried.

A note on Chebyshev smoothers. Chebyshev solvers are attractive as multigrid smoothers because they
can target a specific interval of the spectrum which is the purpose of a smoother. The spectral bounds for
Chebyshev solvers are simple to compute because they rely on the highest eigenvalue of your (diagonally
preconditioned) operator, which is conceptually simple to compute. However, if this highest eigenvalue
estimate is not accurate (too low) then the solvers can fail with and indefinite preconditioner message.
One can run with -info and grep for “GAMG” to get these estimates or use -ksp_view. These highest
eigenvalues are generally between 1.5-3.0. For symmetric positive definite systems CG is a better eigenvalue
estimator -mg_levels_esteig_ksp_type cg. Indefinite matrix messages are often caused by bad Eigen
estimates. Explicitly damped Jacobi or Krylov smoothers can provide an alternative to Chebyshev and hypre
has alternative smoothers.

Now am I solving alright, can I expect better? If you find that you are getting nearly on digit in
reduction of the residual per iteration and are using a modest number of point smoothing steps (e.g., 1-4
iterations of SOR), then you may be fairly close to textbook multigrid efficiency. Although you also need
to check the setup costs. This can be determined by running with -log_view and check that the time
for the Galerkin coarse grid construction (MatPtAP) is not (much) more than the time spent in each solve
(KSPSolve). If the MatPtAP time is too large then one can increase the coarsening rate by decreasing the
threshold and squaring the coarsening graph (-pc_gamg_square_graph <N>, squares the graph on the
finest N levels). Likewise if your MatPtAP time is small and your convergence rate is not ideal then you
could decrease the coarsening rate.

PETSc’s AMG solver is constructed as a framework for developers to easily add AMG capabilities, like a new
AMG methods or an AMG component like a matrix triple product. Contact us directly if you are interested
in contributing.

70 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

Balancing Domain Decomposition by Constraints

PETSc provides the Balancing Domain Decomposition by Constraints (BDDC) method for precondition-
ing parallel finite element problems stored in unassembled format (see MATIS). BDDC is a 2-level non-
overlapping domain decomposition method which can be easily adapted to different problems and discretiza-
tions by means of few user customizations. The application of the preconditioner to a vector consists in
the static condensation of the residual at the interior of the subdomains by means of local Dirichet solves,
followed by an additive combination of Neumann local corrections and the solution of a global coupled coarse
problem. Command line options for the underlying KSP objects are prefixed by -pc_bddc_dirichlet,
-pc_bddc_neumann, and -pc_bddc_coarse respectively.

The current implementation supports any kind of linear system, and assumes a one-to-one mapping between
subdomains and MPI processes. Complex numbers are supported as well. For non-symmetric problems, use
the runtime option -pc_bddc_symmetric 0.

Unlike conventional non-overlapping methods that iterates just on the degrees of freedom at the in-
terface between subdomain, PCBDDC iterates on the whole set of degrees of freedom, allowing the use
of approximate subdomain solvers. When using approximate solvers, the command line switches -
pc_bddc_dirichlet_approximate and/or -pc_bddc_neumann_approximate should be used to
inform PCBDDC. If any of the local problems is singular, the nullspace of the local operator should be at-
tached to the local matrix via MatSetNullSpace().

At the basis of the method there’s the analysis of the connected components of the interface for the detection
of vertices, edges and faces equivalence classes. Additional information on the degrees of freedom can be
supplied to PCBDDC by using the following functions:

• PCBDDCSetDofsSplitting()

• PCBDDCSetLocalAdjacencyGraph()

• PCBDDCSetPrimalVerticesLocalIS()

• PCBDDCSetNeumannBoundaries()

• PCBDDCSetDirichletBoundaries()

• PCBDDCSetNeumannBoundariesLocal()

• PCBDDCSetDirichletBoundariesLocal()

Crucial for the convergence of the iterative process is the specification of the primal constraints to be im-
posed at the interface between subdomains. PCBDDC uses by default vertex continuities and edge arithmetic
averages, which are enough for the three-dimensional Poisson problem with constant coefficients. The user
can switch on and off the usage of vertices, edges or face constraints by using the command line switches
-pc_bddc_use_vertices, -pc_bddc_use_edges, -pc_bddc_use_faces. A customization of the
constraints is available by attaching a MatNullSpace object to the preconditioning matrix via MatSetN-
earNullSpace(). The vectors of the MatNullSpace object should represent the constraints in the form
of quadrature rules; quadrature rules for different classes of the interface can be listed in the same vector.
The number of vectors of the MatNullSpace object corresponds to the maximum number of constraints
that can be imposed for each class. Once all the quadrature rules for a given interface class have been
extracted, an SVD operation is performed to retain the non-singular modes. As an example, the rigid body
modes represent an effective choice for elasticity, even in the almost incompressible case. For particular
problems, e.g. edge-based discretization with Nedelec elements, a user defined change of basis of the degrees
of freedom can be beneficial for PCBDDC; use PCBDDCSetChangeOfBasisMat() to customize the change
of basis.

The BDDC method is usually robust with respect to jumps in the material parameters aligned with the
interface; for PDEs with more than one material parameter you may also consider to use the so-called deluxe
scaling, available via the command line switch -pc_bddc_use_deluxe_scaling. Other scalings are
available, see PCISSetSubdomainScalingFactor(), PCISSetSubdomainDiagonalScaling() or

2.3. KSP: Linear System Solvers 71

PETSc Users Manual, Release 3.14.2

PCISSetUseStiffnessScaling(). However, the convergence properties of the BDDC method degrades
in presence of large jumps in the material coefficients not aligned with the interface; for such cases, PETSc
has the capability of adaptively computing the primal constraints. Adaptive selection of constraints could be
requested by specifying a threshold value at command line by using -pc_bddc_adaptive_threshold x.
Valid values for the threshold x ranges from 1 to infinity, with smaller values corresponding to more robust
preconditioners. For SPD problems in 2D, or in 3D with only face degrees of freedom (like in the case of
Raviart-Thomas or Brezzi-Douglas-Marini elements), such a threshold is a very accurate estimator of the
condition number of the resulting preconditioned operator. Since the adaptive selection of constraints for
BDDC methods is still an active topic of research, its implementation is currently limited to SPD problems;
moreover, because the technique requires the explicit knowledge of the local Schur complements, it needs
the external package MUMPS.

When solving problems decomposed in thousands of subdomains or more, the solution of the BDDC coarse
problem could become a bottleneck; in order to overcome this issue, the user could either consider to solve
the parallel coarse problem on a subset of the communicator associated with PCBDDC by using the command
line switch -pc_bddc_coarse_redistribute, or instead use a multilevel approach. The latter can
be requested by specifying the number of requested level at command line (-pc_bddc_levels) or by
using PCBDDCSetLevels(). An additional parameter (see PCBDDCSetCoarseningRatio()) controls
the number of subdomains that will be generated at the next level; the larger the coarsening ratio, the lower
the number of coarser subdomains.

For further details, see the example KSP Tutorial ex59 and the online documentation for PCBDDC.

Shell Preconditioners

The shell preconditioner simply uses an application-provided routine to implement the preconditioner. To
set this routine, one uses the command

PCShellSetApply(PC pc,PetscErrorCode (*apply)(PC,Vec,Vec));

Often a preconditioner needs access to an application-provided data structured. For this, one should use

PCShellSetContext(PC pc,void *ctx);

to set this data structure and

PCShellGetContext(PC pc,void **ctx);

to retrieve it in apply. The three routine arguments of apply() are the PC, the input vector, and the
output vector, respectively.

For a preconditioner that requires some sort of “setup” before being used, that requires a new setup every
time the operator is changed, one can provide a routine that is called every time the operator is changed
(usually via KSPSetOperators()).

PCShellSetSetUp(PC pc,PetscErrorCode (*setup)(PC));

The argument to the setup routine is the same PC object which can be used to obtain the operators with
PCGetOperators() and the application-provided data structure that was set with PCShellSetCon-
text().

72 Chapter 2. Programming with PETSc

https://www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/tutorials/ex59.c

PETSc Users Manual, Release 3.14.2

Combining Preconditioners

The PC type PCCOMPOSITE allows one to form new preconditioners by combining already-defined precondi-
tioners and solvers. Combining preconditioners usually requires some experimentation to find a combination
of preconditioners that works better than any single method. It is a tricky business and is not recommended
until your application code is complete and running and you are trying to improve performance. In many
cases using a single preconditioner is better than a combination; an exception is the multigrid/multilevel
preconditioners (solvers) that are always combinations of some sort, see Multigrid Preconditioners.

Let B1 and B2 represent the application of two preconditioners of type type1 and type2. The precondi-
tioner B = B1 +B2 can be obtained with

PCSetType(pc,PCCOMPOSITE);
PCCompositeAddPC(pc,type1);
PCCompositeAddPC(pc,type2);

Any number of preconditioners may added in this way.

This way of combining preconditioners is called additive, since the actions of the preconditioners are added
together. This is the default behavior. An alternative can be set with the option

PCCompositeSetType(PC pc,PCCompositeType PC_COMPOSITE_MULTIPLICATIVE);

In this form the new residual is updated after the application of each preconditioner and the next precondi-
tioner applied to the next residual. For example, with two composed preconditioners: B1 and B2; y = Bx
is obtained from

y = B1x

w1 = x−Ay

y = y +B2w1

Loosely, this corresponds to a Gauss-Seidel iteration, while additive corresponds to a Jacobi iteration.

Under most circumstances, the multiplicative form requires one-half the number of iterations as the additive
form; however, the multiplicative form does require the application of A inside the preconditioner.

In the multiplicative version, the calculation of the residual inside the preconditioner can be done in two
ways: using the original linear system matrix or using the matrix used to build the preconditioners B1, B2,
etc. By default it uses the “preconditioner matrix”, to use the Amat matrix use the option

PCSetUseAmat(PC pc);

The individual preconditioners can be accessed (in order to set options) via

PCCompositeGetPC(PC pc,PetscInt count,PC *subpc);

For example, to set the first sub preconditioners to use ILU(1)

PC subpc;
PCCompositeGetPC(pc,0,&subpc);
PCFactorSetFill(subpc,1);

One can also change the operator that is used to construct a particular PC in the composite PC call
PCSetOperators() on the obtained PC.

These various options can also be set via the options database. For example, -pc_type composite -
pc_composite_pcs jacobi,ilu causes the composite preconditioner to be used with two precondition-
ers: Jacobi and ILU. The option -pc_composite_type multiplicative initiates the multiplicative ver-
sion of the algorithm, while -pc_composite_type additive the additive version. Using the Amatmatrix

2.3. KSP: Linear System Solvers 73

PETSc Users Manual, Release 3.14.2

is obtained with the option -pc_use_amat. One sets options for the sub-preconditioners with the extra pre-
fix -sub_N_ where N is the number of the sub-preconditioner. For example, -sub_0_pc_ifactor_fill
0.

PETSc also allows a preconditioner to be a complete linear solver. This is achieved with the PCKSP type.

PCSetType(PC pc,PCKSP PCKSP);
PCKSPGetKSP(pc,&ksp);
/* set any KSP/PC options */

From the command line one can use 5 iterations of biCG-stab with ILU(0) preconditioning as the precondi-
tioner with -pc_type ksp -ksp_pc_type ilu -ksp_ksp_max_it 5 -ksp_ksp_type bcgs.

By default the inner KSP solver uses the outer preconditioner matrix, Pmat, as the matrix to be solved in
the linear system; to use the matrix that defines the linear system, Amat use the option

PCSetUseAmat(PC pc);

or at the command line with -pc_use_amat.

Naturally, one can use a PCKSP preconditioner inside a composite preconditioner. For example, -pc_type
composite -pc_composite_pcs ilu,ksp -sub_1_pc_type jacobi -sub_1_ksp_max_it 10
uses two preconditioners: ILU(0) and 10 iterations of GMRES with Jacobi preconditioning. However, it is
not clear whether one would ever wish to do such a thing.

Multigrid Preconditioners

A large suite of routines is available for using geometric multigrid as a preconditioner2. In the PC framework,
the user is required to provide the coarse grid solver, smoothers, restriction and interpolation operators, and
code to calculate residuals. The PC package allows these components to be encapuslated within a PETSc-
compliant preconditioner. We fully support both matrix-free and matrix-based multigrid solvers.

A multigrid preconditioner is created with the four commands

KSPCreate(MPI_Comm comm,KSP *ksp);
KSPGetPC(KSP ksp,PC *pc);
PCSetType(PC pc,PCMG);
PCMGSetLevels(pc,PetscInt levels,MPI_Comm *comms);

A large number of parameters affect the multigrid behavior. The command

PCMGSetType(PC pc,PCMGType mode);

indicates which form of multigrid to apply [SBjorstadG96].

For standard V or W-cycle multigrids, one sets the mode to be PC_MG_MULTIPLICATIVE; for the additive
form (which in certain cases reduces to the BPX method, or additive multilevel Schwarz, or multilevel
diagonal scaling), one uses PC_MG_ADDITIVE as the mode. For a variant of full multigrid, one can use
PC_MG_FULL, and for the Kaskade algorithm PC_MG_KASKADE. For the multiplicative and full multigrid
options, one can use a W-cycle by calling

PCMGSetCycleType(PC pc,PCMGCycleType ctype);

with a value of PC_MG_CYCLE_W for ctype. The commands above can also be set from the options
database. The option names are -pc_mg_type [multiplicative, additive, full, kaskade],
and -pc_mg_cycle_type <ctype>.

2 See Algebraic Multigrid (AMG) Preconditioners for information on using algebraic multigrid.

74 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

The user can control the amount of smoothing by configuring the solvers on the levels. By default, the up
and down smoothers are identical. If separate configuration of up and down smooths is required, it can be
requested with the option -pc_mg_distinct_smoothup or the routine

PCMGSetDistinctSmoothUp(PC pc);

The multigrid routines, which determine the solvers and interpolation/restriction operators that are used,
are mandatory. To set the coarse grid solver, one must call

PCMGGetCoarseSolve(PC pc,KSP *ksp);

and set the appropriate options in ksp. Similarly, the smoothers are controlled by first calling

PCMGGetSmoother(PC pc,PetscInt level,KSP *ksp);

and then setting the various options in the ksp. For example,

PCMGGetSmoother(pc,1,&ksp);
KSPSetOperators(ksp,A1,A1);

sets the matrix that defines the smoother on level 1 of the multigrid. While

PCMGGetSmoother(pc,1,&ksp);
KSPGetPC(ksp,&pc);
PCSetType(pc,PCSOR);

sets SOR as the smoother to use on level 1.

To use a different pre- or postsmoother, one should call the following routines instead.

PCMGGetSmootherUp(PC pc,PetscInt level,KSP *upksp);
PCMGGetSmootherDown(PC pc,PetscInt level,KSP *downksp);

Use

PCMGSetInterpolation(PC pc,PetscInt level,Mat P);

and

PCMGSetRestriction(PC pc,PetscInt level,Mat R);

to define the intergrid transfer operations. If only one of these is set, its transpose will be used for the other.

It is possible for these interpolation operations to be matrix free (see Matrix-Free Matrices); One should
then make sure that these operations are defined for the (matrix-free) matrices passed in. Note that this
system is arranged so that if the interpolation is the transpose of the restriction, you can pass the same mat
argument to both PCMGSetRestriction() and PCMGSetInterpolation().

On each level except the coarsest, one must also set the routine to compute the residual. The following
command suffices:

PCMGSetResidual(PC pc,PetscInt level,PetscErrorCode (*residual)(Mat,Vec,Vec,Vec),Mat␣
↪→mat);

The residual() function normally does not need to be set if one’s operator is stored in Mat format. In
certain circumstances, where it is much cheaper to calculate the residual directly, rather than through the
usual formula b−Ax, the user may wish to provide an alternative.

2.3. KSP: Linear System Solvers 75

PETSc Users Manual, Release 3.14.2

Finally, the user may provide three work vectors for each level (except on the finest, where only the residual
work vector is required). The work vectors are set with the commands

PCMGSetRhs(PC pc,PetscInt level,Vec b);
PCMGSetX(PC pc,PetscInt level,Vec x);
PCMGSetR(PC pc,PetscInt level,Vec r);

The PC references these vectors, so you should call VecDestroy() when you are finished with them. If
any of these vectors are not provided, the preconditioner will allocate them.

One can control the KSP and PC options used on the various levels (as well as the coarse grid) using the
prefix mg_levels_ (mg_coarse_ for the coarse grid). For example, -mg_levels_ksp_type cg will
cause the CG method to be used as the Krylov method for each level. Or -mg_levels_pc_type ilu
-mg_levels_pc_factor_levels 2 will cause the ILU preconditioner to be used on each level with two
levels of fill in the incomplete factorization.

2.3.5 Solving Block Matrices

Block matrices represent an important class of problems in numerical linear algebra and offer the possibility
of far more efficient iterative solvers than just treating the entire matrix as black box. In this section we use
the common linear algebra definition of block matrices where matrices are divided in a small, problem-size
independent (two, three or so) number of very large blocks. These blocks arise naturally from the underlying
physics or discretization of the problem, for example, the velocity and pressure. Under a certain numbering
of unknowns the matrix can be written as

A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33

 ,

where each Aij is an entire block. On a parallel computer the matrices are not explicitly stored this way.
Instead, each process will own some of the rows of A0∗, A1∗ etc. On a process, the blocks may be stored one
block followed by another 

A0000 A0001 A0002 ... A0100 A0102 ...
A0010 A0011 A0012 ... A0110 A0112 ...
A0020 A0021 A0022 ... A0120 A0122 ...
...

A1000 A1001 A1002 ... A1100 A1102 ...
A1010 A1011 A1012 ... A1110 A1112 ...
...


or interlaced, for example with two blocks

A0000 A0100 A0001 A0101 ...
A1000 A1100 A1001 A1101 ...
...

A0010 A0110 A0011 A0111 ...
A1010 A1110 A1011 A1111 ...
...

 .

Note that for interlaced storage the number of rows/columns of each block must be the same size. Matrices
obtained with DMCreateMatrix() where the DM is a DMDA are always stored interlaced. Block matrices
can also be stored using the MATNEST format which holds separate assembled blocks. Each of these nested
matrices is itself distributed in parallel. It is more efficient to use MATNEST with the methods described in
this section because there are fewer copies and better formats (e.g. BAIJ or SBAIJ) can be used for the

76 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

components, but it is not possible to use many other methods with MATNEST. See Block Matrices for more
on assembling block matrices without depending on a specific matrix format.

The PETSc PCFIELDSPLIT preconditioner is used to implement the “block” solvers in PETSc. There
are three ways to provide the information that defines the blocks. If the matrices are stored as interlaced
then PCFieldSplitSetFields() can be called repeatedly to indicate which fields belong to each block.
More generally PCFieldSplitSetIS() can be used to indicate exactly which rows/columns of the matrix
belong to a particular block. You can provide names for each block with these routines, if you do not provide
names they are numbered from 0. With these two approaches the blocks may overlap (though generally they
will not). If only one block is defined then the complement of the matrices is used to define the other block.
Finally the option -pc_fieldsplit_detect_saddle_point causes two diagonal blocks to be found,
one associated with all rows/columns that have zeros on the diagonals and the rest.

For simplicity in the rest of the section we restrict our matrices to two by two blocks. So the matrix is(
A00 A01

A10 A11

)
.

On occasion the user may provide another matrix that is used to construct parts of the preconditioner(
Ap00 Ap01
Ap10 Ap11

)
.

For notational simplicity define ksp(A,Ap) to mean approximately solving a linear system using KSP with
operator A and preconditioner built from matrix Ap.

For matrices defined with any number of blocks there are three “block” algorithms available: block Jacobi,(
ksp(A00, Ap00) 0

0 ksp(A11, Ap11)

)
block Gauss-Seidel, (

I 0
0 A−1

11

)(
I 0
−A10 I

)(
A−1

00 0
0 I

)
which is implemented3 as(

I 0
0 ksp(A11, Ap11)

)[(
0 0
0 I

)
+

(
I 0
−A10 −A11

)(
I 0
0 0

)](
ksp(A00, Ap00) 0

0 I

)
and symmetric block Gauss-Seidel(

A−1
00 0
0 I

)(
I −A01

0 I

)(
A00 0
0 A−1

11

)(
I 0
−A10 I

)(
A−1

00 0
0 I

)
.

These can be accessed with -pc_fieldsplit_type<additive,multiplicative,
symmetric_multiplicative> or the function PCFieldSplitSetType(). The option prefixes
for the internal KSPs are given by -fieldsplit_name_.

By default blocks A00, A01 and so on are extracted out of Pmat, the matrix that the KSP uses to build
the preconditioner, and not out of Amat (i.e., A itself). As discussed above in Combining Preconditioners,
however, it is possible to use Amat instead of Pmat by calling PCSetUseAmat(pc) or using -pc_use_amat
on the command line. Alternatively, you can have PCFieldSplit extract the diagonal blocks A00, A11 etc.
out of Amat by calling PCFieldSplitSetDiagUseAmat(pc,PETSC_TRUE) or supplying command-line
argument -pc_fieldsplit_diag_use_amat. Similarly, PCFieldSplitSetOffDiagUseAmat(pc,
{PETSC_TRUE) or -pc_fieldsplit_off_diag_use_amat will cause the off-diagonal blocks A01, A10

etc. to be extracted out of Amat.
3 This may seem an odd way to implement since it involves the “extra” multiply by −A11. The reason is this is implemented

this way is that this approach works for any number of blocks that may overlap.

2.3. KSP: Linear System Solvers 77

PETSc Users Manual, Release 3.14.2

For two by two blocks only there are another family of solvers, based on Schur complements. The inverse of
the Schur complement factorization is[(

I 0
A10A

−1
00 I

)(
A00 0
0 S

)(
I A−1

00 A01

0 I

)]−1

(
I A−1

00 A01

0 I

)−1 (
A−1

00 0
0 S−1

)(
I 0

A10A
−1
00 I

)−1

(
I −A−1

00 A01

0 I

)(
A−1

00 0
0 S−1

)(
I 0

−A10A
−1
00 I

)
(

A−1
00 0
0 I

)(
I −A01

0 I

)(
A00 0
0 S−1

)(
I 0
−A10 I

)(
A−1

00 0
0 I

)
.

The preconditioner is accessed with -pc_fieldsplit_type schur and is implemented as(
ksp(A00, Ap00) 0

0 I

)(
I −A01

0 I

)(
I 0

0 ksp(Ŝ, Ŝp)

)(
I 0

−A10ksp(A00, Ap00) I

)
.

Where Ŝ = A11 −A10ksp(A00, Ap00)A01 is the approximate Schur complement.

There are several variants of the Schur complement preconditioner obtained by dropping some of the terms,
these can be obtained with -pc_fieldsplit_schur_fact_type <diag,lower,upper,full> or the
function PCFieldSplitSetSchurFactType(). Note that the diag form uses the preconditioner(

ksp(A00, Ap00) 0

0 −ksp(Ŝ, Ŝp)

)
.

This is done to ensure the preconditioner is positive definite for a common class of problems, saddle points
with a positive definite A00: for these the Schur complement is negative definite.

The effectiveness of the Schur complement preconditioner depends on the availability of a good precon-
ditioner Ŝp for the Schur complement matrix. In general, you are responsible for supplying Ŝp via
PCFieldSplitSchurPrecondition(pc,PC_FIELDSPLIT_SCHUR_PRE_USER,Sp). In the absence
of a good problem-specific Ŝp, you can use some of the built-in options.

Using -pc_fieldsplit_schur_precondition user on the command line activates the matrix sup-
plied programmatically as explained above.

With -pc_fieldsplit_schur_precondition a11 (default) Ŝp = A11 is used to build a preconditioner
for Ŝ.

Otherwise, -pc_fieldsplit_schur_precondition self will set Ŝp = Ŝ and use the Schur comple-
ment matrix itself to build the preconditioner.

The problem with the last approach is that Ŝ is used in unassembled, matrix-free form, and many precondi-
tioners (e.g., ILU) cannot be built out of such matrices. Instead, you can assemble an approximation to Ŝ by
inverting A00, but only approximately, so as to ensure the sparsity of Ŝp as much as possible. Specifically,
using -pc_fieldsplit_schur_precondition selfp will assemble Ŝp = A11 −A10inv(A00)A01.

By default inv(A00) is the inverse of the diagonal of A00, but using -
fieldsplit_1_mat_schur_complement_ainv_type lump will lump A00 first. Using -
fieldsplit_1_mat_schur_complement_ainv_type blockdiag will use the inverse of the
block diagonal of A00. Option -mat_schur_complement_ainv_type applies to any matrix of
MatSchurComplement type and here it is used with the prefix -fieldsplit_1 of the linear system in
the second split.

Finally, you can use the PCLSC preconditioner for the Schur complement with -pc_fieldsplit_type
schur -fieldsplit_1_pc_type lsc. This uses for the preconditioner to Ŝ the operator

ksp(A10A01, A10A01)A10A00A01ksp(A10A01, A10A01)

78 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

which, of course, introduces two additional inner solves for each application of the Schur complement. The
options prefix for this inner KSP is -fieldsplit_1_lsc_. Instead of constructing the matrix A10A01 the
user can provide their own matrix. This is done by attaching the matrix/matrices to the Sp matrix they
provide with

PetscObjectCompose((PetscObject)Sp,"LSC_L",(PetscObject)L);
PetscObjectCompose((PetscObject)Sp,"LSC_Lp",(PetscObject)Lp);

2.3.6 Solving Singular Systems

Sometimes one is required to solver singular linear systems. In this case, the system matrix has a nontrivial
null space. For example, the discretization of the Laplacian operator with Neumann boundary conditions
has a null space of the constant functions. PETSc has tools to help solve these systems.

First, one must know what the null space is and store it using an orthonormal basis in an array of PETSc
Vecs. The constant functions can be handled separately, since they are such a common case). Create a
MatNullSpace object with the command

MatNullSpaceCreate(MPI_Comm,PetscBool hasconstants,PetscInt dim,Vec *basis,
↪→MatNullSpace *nsp);

Here, dim is the number of vectors in basis and hasconstants indicates if the null space contains the
constant functions. If the null space contains the constant functions you do not need to include it in the
basis vectors you provide, nor in the count dim.

One then tells the KSP object you are using what the null space is with the call

MatSetNullSpace(Mat Amat,MatNullSpace nsp);
MatSetTransposeNullSpace(Mat Amat,MatNullSpace nsp);

The Amat should be the first matrix argument used with KSPSetOperators(), SNESSetJacobian(),
or TSSetIJacobian(). You can also use KSPSetNullspace(). The PETSc solvers will now handle the
null space during the solution process.

If one chooses a direct solver (or an incomplete factorization) it may still detect a zero pivot. You can
run with the additional options or -pc_factor_shift_type NONZERO -pc_factor_shift_amount
<dampingfactor> to prevent the zero pivot. A good choice for the dampingfactor is 1.e-10.

2.3.7 Using External Linear Solvers

PETSc interfaces to several external linear solvers (also see Acknowledgments) at the beginning of this
manual). To use these solvers, one may:

1. Run ./configure with the additional options --download-packagename e.g. --download-
superlu_dist --download-parmetis (SuperLU_DIST needs ParMetis) or --download-
mumps --download-scalapack (MUMPS requires ScaLAPACK).

2. Build the PETSc libraries.

3. Use the runtime option: -ksp_type preonly -pc_type <pctype> -
pc_factor_mat_solver_type <packagename>. For eg: -ksp_type preonly -pc_type
lu -pc_factor_mat_solver_type superlu_dist.

2.3. KSP: Linear System Solvers 79

PETSc Users Manual, Release 3.14.2

Table 2.6: Options for External Solvers
MatType PCType MatSolverType Package (-

pc_factor_mat_solver_type)
seqaij lu MATSOLVERESSL essl
seqaij lu MATSOLVERLUSOL lusol
seqaij lu MATSOLVERMATLAB matlab
aij lu MATSOLVERMUMPS mumps
aij cholesky

• •

sbaij cholesky
• •

seqaij lu MATSOLVERSUPERLU superlu
aij lu MATSOLVERSUPERLU_DISTsuperlu_dist
seqaij lu MATSOLVERUMFPACK umfpack
seqaij cholesky MATSOLVERCHOLMOD cholmod
aij lu MATSOLVERCLIQUE clique
seqaij lu MATSOLVERKLU klu
dense lu MATSOLVERELEMENTAL elemental
dense cholesky

• •

seqaij lu MATSOLVERMKL_PARDISOmkl_pardiso
aij lu MATSOLVERMKL_CPARDISOmkl_cpardiso
aij lu MATSOLVERPASTIX pastix
aij cholesky MATSOLVERBAS bas
aijcusparse lu MATSOLVERCUSPARSE cusparse
aijcusparse cholesky

• •

aij lu, cholesky MATSOLVERPETSC petsc
baij

• • •

aijcrl
• • •

aijperm
• • •

seqdense
• • •

aij
• • •

baij
• • •

Continued on next page

80 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

Table 2.6 – continued from previous page
MatType PCType MatSolverType Package (-

pc_factor_mat_solver_type)
aijcrl

• • •

aijperm
• • •

seqdense
• • •

The default and available input options for each external software can be found by specifying -help at
runtime.

As an alternative to using runtime flags to employ these external packages, procedural calls are provided for
some packages. For example, the following procedural calls are equivalent to runtime options -ksp_type
preonly -pc_type lu -pc_factor_mat_solver_type mumps -mat_mumps_icntl_7 2:

KSPSetType(ksp,KSPPREONLY);
KSPGetPC(ksp,&pc);
PCSetType(pc,PCLU);
PCFactorSetMatSolverType(pc,MATSOLVERMUMPS);
PCFactorGetMatrix(pc,&F);
icntl=7; ival = 2;
MatMumpsSetIcntl(F,icntl,ival);

One can also create matrices with the appropriate capabilities by calling MatCreate() followed by Mat-
SetType() specifying the desired matrix type from Options for External Solvers. These matrix types inherit
capabilities from their PETSc matrix parents: seqaij, mpiaij, etc. As a result, the preallocation rou-
tines MatSeqAIJSetPreallocation(), MatMPIAIJSetPreallocation(), etc. and any other type
specific routines of the base class are supported. One can also call MatConvert() inplace to convert the
matrix to and from its base class without performing an expensive data copy. MatConvert() cannot be
called on matrices that have already been factored.

In Options for External Solvers, the base class aij refers to the fact that inheritance is based on MATSEQAIJ
when constructed with a single process communicator, and from MATMPIAIJ otherwise. The same holds for
baij and sbaij. For codes that are intended to be run as both a single process or with multiple processes,
depending on the mpiexec command, it is recommended that both sets of preallocation routines are called
for these communicator morphing types. The call for the incorrect type will simply be ignored without any
harm or message.

2.4 SNES: Nonlinear Solvers

Note: This chapter is being cleaned up by Jed Brown. Contributions are welcome.

The solution of large-scale nonlinear problems pervades many facets of computational science and demands
robust and flexible solution strategies. The SNES library of PETSc provides a powerful suite of data-
structure-neutral numerical routines for such problems. Built on top of the linear solvers and data structures
discussed in preceding chapters, SNES enables the user to easily customize the nonlinear solvers according to
the application at hand. Also, the SNES interface is identical for the uniprocess and parallel cases; the only

2.4. SNES: Nonlinear Solvers 81

PETSc Users Manual, Release 3.14.2

difference in the parallel version is that each process typically forms only its local contribution to various
matrices and vectors.

The SNES class includes methods for solving systems of nonlinear equations of the form

F(x) = 0, (2.3)

where F : <n → <n. Newton-like methods provide the core of the package, including both line search and
trust region techniques. A suite of nonlinear Krylov methods and methods based upon problem decompo-
sition are also included. The solvers are discussed further in The Nonlinear Solvers. Following the PETSc
design philosophy, the interfaces to the various solvers are all virtually identical. In addition, the SNES
software is completely flexible, so that the user can at runtime change any facet of the solution process.

PETSc’s default method for solving the nonlinear equation is Newton’s method. The general form of the
n-dimensional Newton’s method for solving (2.3) is

xk+1 = xk − J(xk)
−1F(xk), k = 0, 1, . . . , (2.4)

where x0 is an initial approximation to the solution and J(xk) = F′(xk), the Jacobian, is nonsingular at each
iteration. In practice, the Newton iteration (2.4) is implemented by the following two steps:

1.(Approximately) solve J(xk)∆xk = −F(xk).

2.Update xk+1 ← xk +∆xk.

Other defect-correction algorithms can be implemented by using different choices for J(xk).

2.4.1 Basic SNES Usage

In the simplest usage of the nonlinear solvers, the user must merely provide a C, C++, or Fortran routine
to evaluate the nonlinear function (2.3). The corresponding Jacobian matrix can be approximated with
finite differences. For codes that are typically more efficient and accurate, the user can provide a routine to
compute the Jacobian; details regarding these application-provided routines are discussed below. To provide
an overview of the use of the nonlinear solvers, browse the concrete example in ex1.c or skip ahead to the
discussion.

Listing: src/snes/tutorials/ex1.c

static char help[] = "Newton's method for a two-variable system, sequential.\n\n";

/*T
Concepts: SNES^basic example

T*/

/*
Include "petscsnes.h" so that we can use SNES solvers. Note that this
file automatically includes:
petscsys.h - base PETSc routines petscvec.h - vectors
petscmat.h - matrices
petscis.h - index sets petscksp.h - Krylov subspace methods
petscviewer.h - viewers petscpc.h - preconditioners
petscksp.h - linear solvers

*/
(continues on next page)

82 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

(continued from previous page)
/*F
This examples solves either
\begin{equation}
F\genfrac{(}{)}{0pt}{}{x_0}{x_1} = \genfrac{(}{)}{0pt}{}{x^2_0 + x_0 x_1 - 3}{x_0 x_

↪→1 + x^2_1 - 6}
\end{equation}
or if the {\tt -hard} options is given
\begin{equation}
F\genfrac{(}{)}{0pt}{}{x_0}{x_1} = \genfrac{(}{)}{0pt}{}{\sin(3 x_0) + x_0}{x_1}

\end{equation}
F*/
#include <petscsnes.h>

/*
User-defined routines

*/
extern PetscErrorCode FormJacobian1(SNES,Vec,Mat,Mat,void*);
extern PetscErrorCode FormFunction1(SNES,Vec,Vec,void*);
extern PetscErrorCode FormJacobian2(SNES,Vec,Mat,Mat,void*);
extern PetscErrorCode FormFunction2(SNES,Vec,Vec,void*);

int main(int argc,char **argv)
{
SNES snes; /* nonlinear solver context */
KSP ksp; /* linear solver context */
PC pc; /* preconditioner context */
Vec x,r; /* solution, residual vectors */
Mat J; /* Jacobian matrix */
PetscErrorCode ierr;
PetscMPIInt size;
PetscScalar pfive = .5,*xx;
PetscBool flg;

ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
if (size > 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Example is only for␣

↪→sequential runs");

/* -
Create nonlinear solver context
- */

ierr = SNESCreate(PETSC_COMM_WORLD,&snes);CHKERRQ(ierr);

/* -
Create matrix and vector data structures; set corresponding routines
- */

/*
Create vectors for solution and nonlinear function

*/
ierr = VecCreate(PETSC_COMM_WORLD,&x);CHKERRQ(ierr);
ierr = VecSetSizes(x,PETSC_DECIDE,2);CHKERRQ(ierr);
ierr = VecSetFromOptions(x);CHKERRQ(ierr);
ierr = VecDuplicate(x,&r);CHKERRQ(ierr);

/*
Create Jacobian matrix data structure

(continues on next page)

2.4. SNES: Nonlinear Solvers 83

PETSc Users Manual, Release 3.14.2

(continued from previous page)
*/
ierr = MatCreate(PETSC_COMM_WORLD,&J);CHKERRQ(ierr);
ierr = MatSetSizes(J,PETSC_DECIDE,PETSC_DECIDE,2,2);CHKERRQ(ierr);
ierr = MatSetFromOptions(J);CHKERRQ(ierr);
ierr = MatSetUp(J);CHKERRQ(ierr);

ierr = PetscOptionsHasName(NULL,NULL,"-hard",&flg);CHKERRQ(ierr);
if (!flg) {

/*
Set function evaluation routine and vector.
*/
ierr = SNESSetFunction(snes,r,FormFunction1,NULL);CHKERRQ(ierr);

/*
Set Jacobian matrix data structure and Jacobian evaluation routine
*/
ierr = SNESSetJacobian(snes,J,J,FormJacobian1,NULL);CHKERRQ(ierr);

} else {
ierr = SNESSetFunction(snes,r,FormFunction2,NULL);CHKERRQ(ierr);
ierr = SNESSetJacobian(snes,J,J,FormJacobian2,NULL);CHKERRQ(ierr);

}

/* -
Customize nonlinear solver; set runtime options

- */
/*

Set linear solver defaults for this problem. By extracting the
KSP and PC contexts from the SNES context, we can then
directly call any KSP and PC routines to set various options.

*/
ierr = SNESGetKSP(snes,&ksp);CHKERRQ(ierr);
ierr = KSPGetPC(ksp,&pc);CHKERRQ(ierr);
ierr = PCSetType(pc,PCNONE);CHKERRQ(ierr);
ierr = KSPSetTolerances(ksp,1.e-4,PETSC_DEFAULT,PETSC_DEFAULT,20);CHKERRQ(ierr);

/*
Set SNES/KSP/KSP/PC runtime options, e.g.,

-snes_view -snes_monitor -ksp_type <ksp> -pc_type <pc>
These options will override those specified above as long as
SNESSetFromOptions() is called _after_ any other customization
routines.

*/
ierr = SNESSetFromOptions(snes);CHKERRQ(ierr);

/* -
Evaluate initial guess; then solve nonlinear system

- */
if (!flg) {

ierr = VecSet(x,pfive);CHKERRQ(ierr);
} else {

ierr = VecGetArray(x,&xx);CHKERRQ(ierr);
xx[0] = 2.0; xx[1] = 3.0;
ierr = VecRestoreArray(x,&xx);CHKERRQ(ierr);

}
/*

Note: The user should initialize the vector, x, with the initial guess

(continues on next page)

84 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

(continued from previous page)
for the nonlinear solver prior to calling SNESSolve(). In particular,
to employ an initial guess of zero, the user should explicitly set
this vector to zero by calling VecSet().

*/

ierr = SNESSolve(snes,NULL,x);CHKERRQ(ierr);
if (flg) {

Vec f;
ierr = VecView(x,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
ierr = SNESGetFunction(snes,&f,0,0);CHKERRQ(ierr);
ierr = VecView(r,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

}

/* -
Free work space. All PETSc objects should be destroyed when they
are no longer needed.

- */

ierr = VecDestroy(&x);CHKERRQ(ierr); ierr = VecDestroy(&r);CHKERRQ(ierr);
ierr = MatDestroy(&J);CHKERRQ(ierr); ierr = SNESDestroy(&snes);CHKERRQ(ierr);
ierr = PetscFinalize();
return ierr;

}
/* --- */
/*

FormFunction1 - Evaluates nonlinear function, F(x).

Input Parameters:
. snes - the SNES context
. x - input vector
. ctx - optional user-defined context

Output Parameter:
. f - function vector
*/
PetscErrorCode FormFunction1(SNES snes,Vec x,Vec f,void *ctx)
{
PetscErrorCode ierr;
const PetscScalar *xx;
PetscScalar *ff;

/*
Get pointers to vector data.

- For default PETSc vectors, VecGetArray() returns a pointer to
the data array. Otherwise, the routine is implementation dependent.

- You MUST call VecRestoreArray() when you no longer need access to
the array.

*/
ierr = VecGetArrayRead(x,&xx);CHKERRQ(ierr);
ierr = VecGetArray(f,&ff);CHKERRQ(ierr);

/* Compute function */
ff[0] = xx[0]*xx[0] + xx[0]*xx[1] - 3.0;
ff[1] = xx[0]*xx[1] + xx[1]*xx[1] - 6.0;

(continues on next page)

2.4. SNES: Nonlinear Solvers 85

PETSc Users Manual, Release 3.14.2

(continued from previous page)
/* Restore vectors */
ierr = VecRestoreArrayRead(x,&xx);CHKERRQ(ierr);
ierr = VecRestoreArray(f,&ff);CHKERRQ(ierr);
return 0;

}
/* --- */
/*

FormJacobian1 - Evaluates Jacobian matrix.

Input Parameters:
. snes - the SNES context
. x - input vector
. dummy - optional user-defined context (not used here)

Output Parameters:
. jac - Jacobian matrix
. B - optionally different preconditioning matrix
. flag - flag indicating matrix structure
*/
PetscErrorCode FormJacobian1(SNES snes,Vec x,Mat jac,Mat B,void *dummy)
{
const PetscScalar *xx;
PetscScalar A[4];
PetscErrorCode ierr;
PetscInt idx[2] = {0,1};

/*
Get pointer to vector data

*/
ierr = VecGetArrayRead(x,&xx);CHKERRQ(ierr);

/*
Compute Jacobian entries and insert into matrix.
- Since this is such a small problem, we set all entries for

the matrix at once.
*/
A[0] = 2.0*xx[0] + xx[1]; A[1] = xx[0];
A[2] = xx[1]; A[3] = xx[0] + 2.0*xx[1];
ierr = MatSetValues(B,2,idx,2,idx,A,INSERT_VALUES);CHKERRQ(ierr);

/*
Restore vector

*/
ierr = VecRestoreArrayRead(x,&xx);CHKERRQ(ierr);

/*
Assemble matrix

*/
ierr = MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
if (jac != B) {

ierr = MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

}
return 0;

}

(continues on next page)

86 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

(continued from previous page)

/* --- */
PetscErrorCode FormFunction2(SNES snes,Vec x,Vec f,void *dummy)
{
PetscErrorCode ierr;
const PetscScalar *xx;
PetscScalar *ff;

/*
Get pointers to vector data.

- For default PETSc vectors, VecGetArray() returns a pointer to
the data array. Otherwise, the routine is implementation dependent.

- You MUST call VecRestoreArray() when you no longer need access to
the array.

*/
ierr = VecGetArrayRead(x,&xx);CHKERRQ(ierr);
ierr = VecGetArray(f,&ff);CHKERRQ(ierr);

/*
Compute function

*/
ff[0] = PetscSinScalar(3.0*xx[0]) + xx[0];
ff[1] = xx[1];

/*
Restore vectors

*/
ierr = VecRestoreArrayRead(x,&xx);CHKERRQ(ierr);
ierr = VecRestoreArray(f,&ff);CHKERRQ(ierr);
return 0;

}
/* --- */
PetscErrorCode FormJacobian2(SNES snes,Vec x,Mat jac,Mat B,void *dummy)
{
const PetscScalar *xx;
PetscScalar A[4];
PetscErrorCode ierr;
PetscInt idx[2] = {0,1};

/*
Get pointer to vector data

*/
ierr = VecGetArrayRead(x,&xx);CHKERRQ(ierr);

/*
Compute Jacobian entries and insert into matrix.
- Since this is such a small problem, we set all entries for

the matrix at once.
*/
A[0] = 3.0*PetscCosScalar(3.0*xx[0]) + 1.0; A[1] = 0.0;
A[2] = 0.0; A[3] = 1.0;
ierr = MatSetValues(B,2,idx,2,idx,A,INSERT_VALUES);CHKERRQ(ierr);

/*
Restore vector

*/

(continues on next page)

2.4. SNES: Nonlinear Solvers 87

PETSc Users Manual, Release 3.14.2

(continued from previous page)
ierr = VecRestoreArrayRead(x,&xx);CHKERRQ(ierr);

/*
Assemble matrix

*/
ierr = MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
if (jac != B) {

ierr = MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

}
return 0;

}

To create a SNES solver, one must first call SNESCreate() as follows:

SNESCreate(MPI_Comm comm,SNES *snes);

The user must then set routines for evaluating the residual function (2.3) and its associated Jacobian matrix,
as discussed in the following sections.

To choose a nonlinear solution method, the user can either call

SNESSetType(SNES snes,SNESType method);

or use the option -snes_type <method>, where details regarding the available methods are presented in
The Nonlinear Solvers. The application code can take complete control of the linear and nonlinear techniques
used in the Newton-like method by calling

SNESSetFromOptions(snes);

This routine provides an interface to the PETSc options database, so that at runtime the user can select
a particular nonlinear solver, set various parameters and customized routines (e.g., specialized line search
variants), prescribe the convergence tolerance, and set monitoring routines. With this routine the user can
also control all linear solver options in the KSP, and PC modules, as discussed in KSP: Linear System Solvers.

After having set these routines and options, the user solves the problem by calling

SNESSolve(SNES snes,Vec b,Vec x);

where x should be initialized to the initial guess before calling and contains the solution on return. In
particular, to employ an initial guess of zero, the user should explicitly set this vector to zero by calling
VecZeroEntries(x). Finally, after solving the nonlinear system (or several systems), the user should
destroy the SNES context with

SNESDestroy(SNES *snes);

88 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

Nonlinear Function Evaluation

When solving a system of nonlinear equations, the user must provide a a residual function (2.3), which is
set using

SNESSetFunction(SNES snes,Vec f,PetscErrorCode (*FormFunction)(SNES snes,Vec x,Vec f,
↪→void *ctx),void *ctx);

The argument f is an optional vector for storing the solution; pass NULL to have the SNES allocate it for
you. The argument ctx is an optional user-defined context, which can store any private, application-specific
data required by the function evaluation routine; NULL should be used if such information is not needed. In
C and C++, a user-defined context is merely a structure in which various objects can be stashed; in Fortran
a user context can be an integer array that contains both parameters and pointers to PETSc objects. SNES
Tutorial ex5 and SNES Tutorial ex5f give examples of user-defined application contexts in C and Fortran,
respectively.

Jacobian Evaluation

The user must also specify a routine to form some approximation of the Jacobian matrix, A, at the current
iterate, x, as is typically done with

SNESSetJacobian(SNES snes,Mat Amat,Mat Pmat,PetscErrorCode (*FormJacobian)(SNES snes,
↪→Vec x,Mat A,Mat B,void *ctx),void *ctx);

The arguments of the routine FormJacobian() are the current iterate, x; the (approximate) Jacobian
matrix, Amat; the matrix from which the preconditioner is constructed, Pmat (which is usually the same
as Amat); and an optional user-defined Jacobian context, ctx, for application-specific data. Note that the
SNES solvers are all data-structure neutral, so the full range of PETSc matrix formats (including “matrix-
free” methods) can be used. Matrices discusses information regarding available matrix formats and options,
while Matrix-Free Methods focuses on matrix-free methods in SNES. We briefly touch on a few details of
matrix usage that are particularly important for efficient use of the nonlinear solvers.

A common usage paradigm is to assemble the problem Jacobian in the preconditioner storage B, rather than
A. In the case where they are identical, as in many simulations, this makes no difference. However, it allows
us to check the analytic Jacobian we construct in FormJacobian() by passing the -snes_mf_operator
flag. This causes PETSc to approximate the Jacobian using finite differencing of the function evaluation
(discussed in Finite Difference Jacobian Approximations), and the analytic Jacobian becomes merely the
preconditioner. Even if the analytic Jacobian is incorrect, it is likely that the finite difference approximation
will converge, and thus this is an excellent method to verify the analytic Jacobian. Moreover, if the analytic
Jacobian is incomplete (some terms are missing or approximate), -snes_mf_operator may be used to
obtain the exact solution, where the Jacobian approximation has been transferred to the preconditioner.

One such approximate Jacobian comes from “Picard linearization” which writes the nonlinear system as

F(x) := A(x)x− b = 0

where A(x) usually contains the lower-derivative parts of the equation. For example, the nonlinear diffusion
problem

−∇ · (κ(u)∇u) = 0

would be linearized as

A(u)v ' −∇ · (κ(u)∇v).

Usually this linearization is simpler to implement than Newton and the linear problems are somewhat easier
to solve. In addition to using -snes_mf_operator with this approximation to the Jacobian, the Picard

2.4. SNES: Nonlinear Solvers 89

https://www.mcs.anl.gov/petsc/petsc-current/src/snes/tutorials/ex5.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/snes/tutorials/ex5.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/snes/tutorials/ex5f.F90.html

PETSc Users Manual, Release 3.14.2

iterative procedure can be performed by defining J(x) to be A(x). Sometimes this iteration exhibits better
global convergence than Newton linearization.

During successive calls to FormJacobian(), the user can either insert new matrix contexts or reuse old
ones, depending on the application requirements. For many sparse matrix formats, reusing the old space (and
merely changing the matrix elements) is more efficient; however, if the matrix structure completely changes,
creating an entirely new matrix context may be preferable. Upon subsequent calls to the FormJacobian()
routine, the user may wish to reinitialize the matrix entries to zero by calling MatZeroEntries(). See
Other Matrix Operations for details on the reuse of the matrix context.

The directory ${PETSC_DIR}/src/snes/tutorials provides a variety of examples.

2.4.2 The Nonlinear Solvers

As summarized in Table PETSc Nonlinear Solvers, SNES includes several Newton-like nonlinear solvers based
on line search techniques and trust region methods. Also provided are several nonlinear Krylov methods, as
well as nonlinear methods involving decompositions of the problem.

Each solver may have associated with it a set of options, which can be set with routines and options database
commands provided for this purpose. A complete list can be found by consulting the manual pages or by
running a program with the -help option; we discuss just a few in the sections below.

Table 2.7: PETSc Nonlinear Solvers
Method SNESType Options

Name
Default Line Search

Line Search Newton SNESNEWTONLS newtonls SNESLINESEARCHBT
Trust region Newton SNESNEWTONTR newtontr —
Nonlinear Richardson SNESNRICHARDSON nrichardson SNESLINESEARCHL2
Nonlinear CG SNESNCG ncg SNESLINESEARCHCP
Nonlinear GMRES SNESNGMRES ngmres SNESLINESEARCHL2
Quasi-Newton SNESQN qn see PETSc quasi-Newton

solvers
Full Approximation Scheme SNESFAS fas —
Nonlinear ASM SNESNASM nasm –
ASPIN SNESASPIN aspin SNESLINESEARCHBT
Nonlinear Gauss-Seidel SNESNGS ngs –
Anderson Mixing SNESANDERSON anderson –
Newton with constraints
(1)

SNESVINEW-
TONRSLS

vinew-
tonrsls

SNESLINESEARCHBT

Newton with constraints
(2)

SNESVINEWTON-
SSLS

vinewton-
ssls

SNESLINESEARCHBT

Multi-stage Smoothers SNESMS ms –
Composite SNESCOMPOSITE composite –
Linear solve only SNESKSPONLY ksponly –
Python Shell SNESPYTHON python –
Shell (user-defined) SNESSHELL shell –

90 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

Line Search Newton

The method SNESNEWTONLS (-snes_type newtonls) provides a line search Newton method for solving
systems of nonlinear equations. By default, this technique employs cubic backtracking [DS83]. Alternative
line search techniques are listed in Table PETSc Line Search Methods.

Table 2.8: PETSc Line Search Methods
Line Search SNESLineSearchType Options Name
Backtracking SNESLINESEARCHBT bt
(damped) step SNESLINESEARCHBASIC basic
L2-norm Minimization SNESLINESEARCHL2 l2
Critical point SNESLINESEARCHCP cp
Shell SNESLINESEARCHSHELL shell

Every SNES has a line search context of type SNESLineSearch that may be retrieved using

SNESGetLineSearch(SNES snes,SNESLineSearch *ls);.

There are several default options for the line searches. The order of polynomial approximation may be set
with -snes_linesearch_order or

SNESLineSearchSetOrder(SNESLineSearch ls, PetscInt order);

for instance, 2 for quadratic or 3 for cubic. Sometimes, it may not be necessary to monitor the progress of
the nonlinear iteration. In this case, -snes_linesearch_norms or

SNESLineSearchSetComputeNorms(SNESLineSearch ls,PetscBool norms);

may be used to turn off function, step, and solution norm computation at the end of the linesearch.

The default line search for the line search Newton method, SNESLINESEARCHBT involves several parameters,
which are set to defaults that are reasonable for many applications. The user can override the defaults by
using the following options:

• -snes_linesearch_alpha <alpha>

• -snes_linesearch_maxstep <max>

• -snes_linesearch_minlambda <tol>

Besides the backtracking linesearch, there are SNESLINESEARCHL2, which uses a polynomial secant mini-
mization of ||F (x)||2, and SNESLINESEARCHCP, which minimizes F (x) · Y where Y is the search direction.
These are both potentially iterative line searches, which may be used to find a better-fitted steplength
in the case where a single secant search is not sufficient. The number of iterations may be set with -
snes_linesearch_max_it. In addition, the convergence criteria of the iterative line searches may be
set using function tolerances -snes_linesearch_rtol and -snes_linesearch_atol, and steplength
tolerance snes_linesearch_ltol.

Custom line search types may either be defined using SNESLineSearchShell, or by creating a custom
user line search type in the model of the preexisting ones and register it using

SNESLineSearchRegister(const char sname[],PetscErrorCode (*function)(SNESLineSearch));
↪→.

2.4. SNES: Nonlinear Solvers 91

PETSc Users Manual, Release 3.14.2

Trust Region Methods

The trust region method in SNES for solving systems of nonlinear equations, SNESNEWTONTR (-snes_type
newtontr), is taken from the MINPACK project [MoreSGH84]. Several parameters can be set to control
the variation of the trust region size during the solution process. In particular, the user can control the
initial trust region radius, computed by

∆ = ∆0‖F0‖2,

by setting ∆0 via the option -snes_tr_delta0 <delta0>.

Nonlinear Krylov Methods

A number of nonlinear Krylov methods are provided, including Nonlinear Richardson, conjugate gradient,
GMRES, and Anderson Mixing. These methods are described individually below. They are all instrumental
to PETSc’s nonlinear preconditioning.

Nonlinear Richardson. The nonlinear Richardson iteration merely takes the form of a line search-damped
fixed-point iteration of the form

xk+1 = xk − λF(xk), k = 0, 1, . . . ,

where the default linesearch is SNESLINESEARCHL2. This simple solver is mostly useful as a nonlinear
smoother, or to provide line search stabilization to an inner method.

Nonlinear Conjugate Gradients. Nonlinear CG is equivalent to linear CG, but with the steplength
determined by line search (SNESLINESEARCHCP by default). Five variants (Fletcher-Reed, Hestenes-Steifel,
Polak-Ribiere-Polyak, Dai-Yuan, and Conjugate Descent) are implemented in PETSc and may be chosen
using

SNESNCGSetType(SNES snes, SNESNCGType btype);

Anderson Mixing and Nonlinear GMRES Methods. Nonlinear GMRES and Anderson Mixing meth-
ods combine the last m iterates, plus a new fixed-point iteration iterate, into a residual-minimizing new
iterate.

Quasi-Newton Methods

Quasi-Newton methods store iterative rank-one updates to the Jacobian instead of computing it directly.
Three limited-memory quasi-Newton methods are provided, L-BFGS, which are described in Table PETSc
quasi-Newton solvers. These all are encapsulated under -snes_type qn and may be changed with
snes_qn_type. The default is L-BFGS, which provides symmetric updates to an approximate Jacobian.
This iteration is similar to the line search Newton methods.

Table 2.9: PETSc quasi-Newton solvers
QN Method SNESQNType Options Name Default Line Search
L-BFGS SNES_QN_LBFGS lbfgs SNESLINESEARCHCP
“Good” Broyden SNES_QN_BROYDEN broyden SNESLINESEARCHBASIC
“Bad” Broyden SNES_QN_BADBROYEN badbroyden SNESLINESEARCHL2

One may also control the form of the initial Jacobian approximation with

92 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

SNESQNSetScaleType(SNES snes, SNESQNScaleType stype);

and the restart type with

SNESQNSetRestartType(SNES snes, SNESQNRestartType rtype);

The Full Approximation Scheme

The Full Approximation Scheme is a nonlinear multigrid correction. At each level, there is a recursive cycle
control SNES instance, and either one or two nonlinear solvers as smoothers (up and down). Problems set
up using the SNES DMDA interface are automatically coarsened. FAS differs slightly from PCMG, in that the
hierarchy is constructed recursively. However, much of the interface is a one-to-one map. We describe the
“get” operations here, and it can be assumed that each has a corresponding “set” operation. For instance,
the number of levels in the hierarchy may be retrieved using

SNESFASGetLevels(SNES snes, PetscInt *levels);

There are four SNESFAS cycle types, SNES_FAS_MULTIPLICATIVE, SNES_FAS_ADDITIVE,
SNES_FAS_FULL, and SNES_FAS_KASKADE. The type may be set with

SNESFASSetType(SNES snes,SNESFASType fastype);.

and the cycle type, 1 for V, 2 for W, may be set with

SNESFASSetCycles(SNES snes, PetscInt cycles);.

Much like the interface to PCMG described in Multigrid Preconditioners, there are interfaces to recover the
various levels’ cycles and smoothers. The level smoothers may be accessed with

SNESFASGetSmoother(SNES snes, PetscInt level, SNES *smooth);
SNESFASGetSmootherUp(SNES snes, PetscInt level, SNES *smooth);
SNESFASGetSmootherDown(SNES snes, PetscInt level, SNES *smooth);

and the level cycles with

SNESFASGetCycleSNES(SNES snes,PetscInt level,SNES *lsnes);.

Also akin to PCMG, the restriction and prolongation at a level may be acquired with

SNESFASGetInterpolation(SNES snes, PetscInt level, Mat *mat);
SNESFASGetRestriction(SNES snes, PetscInt level, Mat *mat);

In addition, FAS requires special restriction for solution-like variables, called injection. This may be set with

SNESFASGetInjection(SNES snes, PetscInt level, Mat *mat);.

The coarse solve context may be acquired with

SNESFASGetCoarseSolve(SNES snes, SNES *smooth);

2.4. SNES: Nonlinear Solvers 93

PETSc Users Manual, Release 3.14.2

Nonlinear Additive Schwarz

Nonlinear Additive Schwarz methods (NASM) take a number of local nonlinear subproblems, solves them
independently in parallel, and combines those solutions into a new approximate solution.

SNESNASMSetSubdomains(SNES snes,PetscInt n,SNES subsnes[],VecScatter iscatter[],
↪→VecScatter oscatter[],VecScatter gscatter[]);

allows for the user to create these local subdomains. Problems set up using the SNES DMDA interface are
automatically decomposed. To begin, the type of subdomain updates to the whole solution are limited to two
types borrowed from PCASM: PC_ASM_BASIC, in which the overlapping updates added. PC_ASM_RESTRICT
updates in a nonoverlapping fashion. This may be set with

SNESNASMSetType(SNES snes,PCASMType type);.

SNESASPIN is a helper SNES type that sets up a nonlinearly preconditioned Newton’s method using NASM
as the preconditioner.

2.4.3 General Options

This section discusses options and routines that apply to all SNES solvers and problem classes. In particular,
we focus on convergence tests, monitoring routines, and tools for checking derivative computations.

Convergence Tests

Convergence of the nonlinear solvers can be detected in a variety of ways; the user can even specify a
customized test, as discussed below. Most of the nonlinear solvers use SNESConvergenceTestDefault(),
however, SNESNEWTONTR uses a method-specific additional convergence test as well. The convergence tests
involves several parameters, which are set by default to values that should be reasonable for a wide range
of problems. The user can customize the parameters to the problem at hand by using some of the following
routines and options.

One method of convergence testing is to declare convergence when the norm of the change in the solution
between successive iterations is less than some tolerance, stol. Convergence can also be determined based
on the norm of the function. Such a test can use either the absolute size of the norm, atol, or its relative
decrease, rtol, from an initial guess. The following routine sets these parameters, which are used in many
of the default SNES convergence tests:

SNESSetTolerances(SNES snes,PetscReal atol,PetscReal rtol,PetscReal stol, PetscInt␣
↪→its,PetscInt fcts);

This routine also sets the maximum numbers of allowable nonlinear iterations, its, and function evaluations,
fcts. The corresponding options database commands for setting these parameters are:

• -snes_atol <atol>

• -snes_rtol <rtol>

• -snes_stol <stol>

• -snes_max_it <its>

• -snes_max_funcs <fcts>

A related routine is SNESGetTolerances().

94 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

Convergence tests for trust regions methods often use an additional parameter that indicates the minimum
allowable trust region radius. The user can set this parameter with the option -snes_trtol <trtol> or
with the routine

SNESSetTrustRegionTolerance(SNES snes,PetscReal trtol);

Users can set their own customized convergence tests in SNES by using the command

SNESSetConvergenceTest(SNES snes,PetscErrorCode (*test)(SNES snes,PetscInt it,
↪→PetscReal xnorm, PetscReal gnorm,PetscReal f,SNESConvergedReason reason, void␣
↪→*cctx),void *cctx,PetscErrorCode (*destroy)(void *cctx));

The final argument of the convergence test routine, cctx, denotes an optional user-defined context for
private data. When solving systems of nonlinear equations, the arguments xnorm, gnorm, and f are the
current iterate norm, current step norm, and function norm, respectively. SNESConvergedReason should
be set positive for convergence and negative for divergence. See include/petscsnes.h for a list of values
for SNESConvergedReason.

Convergence Monitoring

By default the SNES solvers run silently without displaying information about the iterations. The user can
initiate monitoring with the command

SNESMonitorSet(SNES snes,PetscErrorCode (*mon)(SNES,PetscInt its,PetscReal norm,void*␣
↪→mctx),void *mctx,PetscErrorCode (*monitordestroy)(void**));

The routine, mon, indicates a user-defined monitoring routine, where its and mctx respectively denote
the iteration number and an optional user-defined context for private data for the monitor routine. The
argument norm is the function norm.

The routine set by SNESMonitorSet() is called once after every successful step computation within
the nonlinear solver. Hence, the user can employ this routine for any application-specific computations
that should be done after the solution update. The option -snes_monitor activates the default SNES
monitor routine, SNESMonitorDefault(), while -snes_monitor_lg_residualnorm draws a simple
line graph of the residual norm’s convergence.

One can cancel hardwired monitoring routines for SNES at runtime with -snes_monitor_cancel.

As the Newton method converges so that the residual norm is small, say 10−10, many of the final digits
printed with the -snes_monitor option are meaningless. Worse, they are different on different machines;
due to different round-off rules used by, say, the IBM RS6000 and the Sun SPARC. This makes testing
between different machines difficult. The option -snes_monitor_short causes PETSc to print fewer of
the digits of the residual norm as it gets smaller; thus on most of the machines it will always print the same
numbers making cross-process testing easier.

The routines

SNESGetSolution(SNES snes,Vec *x);
SNESGetFunction(SNES snes,Vec *r,void *ctx,int(**func)(SNES,Vec,Vec,void*));

return the solution vector and function vector from a SNES context. These routines are useful, for instance, if
the convergence test requires some property of the solution or function other than those passed with routine
arguments.

2.4. SNES: Nonlinear Solvers 95

PETSc Users Manual, Release 3.14.2

Checking Accuracy of Derivatives

Since hand-coding routines for Jacobian matrix evaluation can be error prone, SNES provides easy-to-use
support for checking these matrices against finite difference versions. In the simplest form of comparison,
users can employ the option -snes_test_jacobian to compare the matrices at several points. Although
not exhaustive, this test will generally catch obvious problems. One can compare the elements of the two
matrices by using the option -snes_test_jacobian_view , which causes the two matrices to be printed
to the screen.

Another means for verifying the correctness of a code for Jacobian computation is running the problem with
either the finite difference or matrix-free variant, -snes_fd or -snes_mf; see Finite Difference Jacobian
Approximations or Matrix-Free Methods. If a problem converges well with these matrix approximations but
not with a user-provided routine, the problem probably lies with the hand-coded matrix. See the note in
Jacobian Evaluation about assembling your Jabobian in the “preconditioner” slot Pmat.

The correctness of user provided MATSHELL Jacobians in general can be checked with MatShellTest-
MultTranspose() and MatShellTestMult().

The correctness of user provided MATSHELL Jacobians via TSSetRHSJacobian() can be checked with
TSRHSJacobianTestTranspose() and TSRHSJacobianTest() that check the correction of the
matrix-transpose vector product and the matrix-product. From the command line, these can be checked
with

• -ts_rhs_jacobian_test_mult_transpose

• -mat_shell_test_mult_transpose_view

• -ts_rhs_jacobian_test_mult

• -mat_shell_test_mult_view

2.4.4 Inexact Newton-like Methods

Since exact solution of the linear Newton systems within (2.4) at each iteration can be costly, modifications
are often introduced that significantly reduce these expenses and yet retain the rapid convergence of Newton’s
method. Inexact or truncated Newton techniques approximately solve the linear systems using an iterative
scheme. In comparison with using direct methods for solving the Newton systems, iterative methods have
the virtue of requiring little space for matrix storage and potentially saving significant computational work.
Within the class of inexact Newton methods, of particular interest are Newton-Krylov methods, where the
subsidiary iterative technique for solving the Newton system is chosen from the class of Krylov subspace
projection methods. Note that at runtime the user can set any of the linear solver options discussed in KSP:
Linear System Solvers, such as -ksp_type <ksp_method> and -pc_type <pc_method>, to set the
Krylov subspace and preconditioner methods.

Two levels of iterations occur for the inexact techniques, where during each global or outer Newton iteration
a sequence of subsidiary inner iterations of a linear solver is performed. Appropriate control of the accuracy
to which the subsidiary iterative method solves the Newton system at each global iteration is critical, since
these inner iterations determine the asymptotic convergence rate for inexact Newton techniques. While the
Newton systems must be solved well enough to retain fast local convergence of the Newton’s iterates, use of
excessive inner iterations, particularly when ‖xk − x∗‖ is large, is neither necessary nor economical. Thus,
the number of required inner iterations typically increases as the Newton process progresses, so that the
truncated iterates approach the true Newton iterates.

A sequence of nonnegative numbers {ηk} can be used to indicate the variable convergence criterion. In
this case, when solving a system of nonlinear equations, the update step of the Newton process remains
unchanged, and direct solution of the linear system is replaced by iteration on the system until the residuals

r(i)k = F′(xk)∆xk + F(xk)

96 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

satisfy

‖r(i)k ‖
‖F(xk)‖

≤ ηk ≤ η < 1.

Here x0 is an initial approximation of the solution, and ‖ · ‖ denotes an arbitrary norm in <n .

By default a constant relative convergence tolerance is used for solving the subsidiary linear systems within
the Newton-like methods of SNES. When solving a system of nonlinear equations, one can instead employ
the techniques of Eisenstat and Walker [EW96] to compute ηk at each step of the nonlinear solver by using
the option -snes_ksp_ew_conv . In addition, by adding one’s own KSP convergence test (see Convergence
Tests), one can easily create one’s own, problem-dependent, inner convergence tests.

2.4.5 Matrix-Free Methods

The SNES class fully supports matrix-free methods. The matrices specified in the Jacobian evaluation
routine need not be conventional matrices; instead, they can point to the data required to implement a
particular matrix-free method. The matrix-free variant is allowed only when the linear systems are solved by
an iterative method in combination with no preconditioning (PCNONE or -pc_type none), a user-provided
preconditioner matrix, or a user-provided preconditioner shell (PCSHELL, discussed in Preconditioners); that
is, obviously matrix-free methods cannot be used with a direct solver, approximate factorization, or other
preconditioner which requires access to explicit matrix entries.

The user can create a matrix-free context for use within SNES with the routine

MatCreateSNESMF(SNES snes,Mat *mat);

This routine creates the data structures needed for the matrix-vector products that arise within Krylov space
iterative methods [BS90] by employing the matrix type MATSHELL, discussed in Matrix-Free Matrices. The
default SNES matrix-free approximations can also be invoked with the command -snes_mf. Or, one can
retain the user-provided Jacobian preconditioner, but replace the user-provided Jacobian matrix with the
default matrix free variant with the option -snes_mf_operator.

See also

MatCreateMFFD(Vec x, Mat *mat);

for users who need a matrix-free matrix but are not using SNES.

The user can set one parameter to control the Jacobian-vector product approximation with the command

MatMFFDSetFunctionError(Mat mat,PetscReal rerror);

The parameter rerror should be set to the square root of the relative error in the function evaluations,
erel; the default is the square root of machine epsilon (about 10−8 in double precision), which assumes that
the functions are evaluated to full floating-point precision accuracy. This parameter can also be set from the
options database with -snes_mf_err <err>

In addition, SNES provides a way to register new routines to compute the differencing parameter (h); see
the manual page for MatMFFDSetType() and MatMFFDRegister(). We currently provide two default
routines accessible via -snes_mf_type <default or wp>. For the default approach there is one
“tuning” parameter, set with

MatMFFDDSSetUmin(Mat mat,PetscReal umin);

2.4. SNES: Nonlinear Solvers 97

PETSc Users Manual, Release 3.14.2

This parameter, umin (or umin), is a bit involved; its default is 10−6 . The Jacobian-vector product is
approximated via the formula

F ′(u)a ≈ F (u+ h ∗ a)− F (u)

h

where h is computed via

h = erel ·

{
uTa/‖a‖22 if |uTa| > umin‖a‖1
umin sign(uTa)‖a‖1/‖a‖22 otherwise.

This approach is taken from Brown and Saad [BS90]. The parameter can also be set from the options
database with -snes_mf_umin <umin>

The second approach, taken from Walker and Pernice, [PW98], computes h via

h =

√
1 + ||u||erel
||a||

This has no tunable parameters, but note that inside the nonlinear solve for the entire linear iterative
process u does not change hence

√
1 + ||u|| need be computed only once. This information may be set with

the options

MatMFFDWPSetComputeNormU(Mat mat,PetscBool);

or -mat_mffd_compute_normu <true or false>. This information is used to eliminate the redundant
computation of these parameters, therefore reducing the number of collective operations and improving the
efficiency of the application code.

It is also possible to monitor the differencing parameters h that are computed via the routines

MatMFFDSetHHistory(Mat,PetscScalar *,int);
MatMFFDResetHHistory(Mat,PetscScalar *,int);
MatMFFDGetH(Mat,PetscScalar *);

We include an explicit example of using matrix-free methods in ex3.c. Note that by using the option -
snes_mf one can easily convert any SNES code to use a matrix-free Newton-Krylov method without a
preconditioner. As shown in this example, SNESSetFromOptions() must be called after SNESSetJaco-
bian() to enable runtime switching between the user-specified Jacobian and the default SNES matrix-free
form.

Listing: src/snes/tutorials/ex3.c

static char help[] = "Newton methods to solve u'' + u^{2} = f in parallel.\n\
This example employs a user-defined monitoring routine and optionally a user-defined\
↪→n\
routine to check candidate iterates produced by line search routines.\n\
The command line options include:\n\
-pre_check_iterates : activate checking of iterates\n\
-post_check_iterates : activate checking of iterates\n\
-check_tol <tol>: set tolerance for iterate checking\n\
-user_precond : activate a (trivial) user-defined preconditioner\n\n";

/*T
Concepts: SNES^basic parallel example
Concepts: SNES^setting a user-defined monitoring routine
Processors: n

(continues on next page)

98 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

(continued from previous page)
T*/

/*
Include "petscdm.h" so that we can use data management objects (DMs)
Include "petscdmda.h" so that we can use distributed arrays (DMDAs).
Include "petscsnes.h" so that we can use SNES solvers. Note that this
file automatically includes:
petscsys.h - base PETSc routines
petscvec.h - vectors
petscmat.h - matrices
petscis.h - index sets
petscksp.h - Krylov subspace methods
petscviewer.h - viewers
petscpc.h - preconditioners
petscksp.h - linear solvers

*/

#include <petscdm.h>
#include <petscdmda.h>
#include <petscsnes.h>

/*
User-defined routines.

*/
PetscErrorCode FormJacobian(SNES,Vec,Mat,Mat,void*);
PetscErrorCode FormFunction(SNES,Vec,Vec,void*);
PetscErrorCode FormInitialGuess(Vec);
PetscErrorCode Monitor(SNES,PetscInt,PetscReal,void*);
PetscErrorCode PreCheck(SNESLineSearch,Vec,Vec,PetscBool*,void*);
PetscErrorCode PostCheck(SNESLineSearch,Vec,Vec,Vec,PetscBool*,PetscBool*,void*);
PetscErrorCode PostSetSubKSP(SNESLineSearch,Vec,Vec,Vec,PetscBool*,PetscBool*,void*);
PetscErrorCode MatrixFreePreconditioner(PC,Vec,Vec);

/*
User-defined application context

*/
typedef struct {
DM da; /* distributed array */
Vec F; /* right-hand-side of PDE */
PetscMPIInt rank; /* rank of processor */
PetscMPIInt size; /* size of communicator */
PetscReal h; /* mesh spacing */
PetscBool sjerr; /* if or not to test jacobian domain error */

} ApplicationCtx;

/*
User-defined context for monitoring

*/
typedef struct {
PetscViewer viewer;

} MonitorCtx;

/*
User-defined context for checking candidate iterates that are

(continues on next page)

2.4. SNES: Nonlinear Solvers 99

PETSc Users Manual, Release 3.14.2

(continued from previous page)
determined by line search methods

*/
typedef struct {
Vec last_step; /* previous iterate */
PetscReal tolerance; /* tolerance for changes between successive iterates */
ApplicationCtx *user;

} StepCheckCtx;

typedef struct {
PetscInt its0; /* num of prevous outer KSP iterations */

} SetSubKSPCtx;

int main(int argc,char **argv)
{
SNES snes; /* SNES context */
SNESLineSearch linesearch; /* SNESLineSearch context */
Mat J; /* Jacobian matrix */
ApplicationCtx ctx; /* user-defined context */
Vec x,r,U,F; /* vectors */
MonitorCtx monP; /* monitoring context */
StepCheckCtx checkP; /* step-checking context */
SetSubKSPCtx checkP1;
PetscBool pre_check,post_check,post_setsubksp; /* flag indicating whether we

↪→'re checking candidate iterates */
PetscScalar xp,*FF,*UU,none = -1.0;
PetscErrorCode ierr;
PetscInt its,N = 5,i,maxit,maxf,xs,xm;
PetscReal abstol,rtol,stol,norm;
PetscBool flg,viewinitial = PETSC_FALSE;

ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&ctx.rank);CHKERRQ(ierr);
ierr = MPI_Comm_size(PETSC_COMM_WORLD,&ctx.size);CHKERRQ(ierr);
ierr = PetscOptionsGetInt(NULL,NULL,"-n",&N,NULL);CHKERRQ(ierr);
ctx.h = 1.0/(N-1);
ctx.sjerr = PETSC_FALSE;
ierr = PetscOptionsGetBool(NULL,NULL,"-test_jacobian_domain_error",&ctx.sjerr,

↪→NULL);CHKERRQ(ierr);
ierr = PetscOptionsGetBool(NULL,NULL,"-view_initial",&viewinitial,NULL);

↪→CHKERRQ(ierr);

/* -
Create nonlinear solver context
- */

ierr = SNESCreate(PETSC_COMM_WORLD,&snes);CHKERRQ(ierr);

/* -
Create vector data structures; set function evaluation routine
- */

/*
Create distributed array (DMDA) to manage parallel grid and vectors

*/
ierr = DMDACreate1d(PETSC_COMM_WORLD,DM_BOUNDARY_NONE,N,1,1,NULL,&ctx.da);

↪→CHKERRQ(ierr);
(continues on next page)

100 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

(continued from previous page)
ierr = DMSetFromOptions(ctx.da);CHKERRQ(ierr);
ierr = DMSetUp(ctx.da);CHKERRQ(ierr);

/*
Extract global and local vectors from DMDA; then duplicate for remaining
vectors that are the same types

*/
ierr = DMCreateGlobalVector(ctx.da,&x);CHKERRQ(ierr);
ierr = VecDuplicate(x,&r);CHKERRQ(ierr);
ierr = VecDuplicate(x,&F);CHKERRQ(ierr); ctx.F = F;
ierr = VecDuplicate(x,&U);CHKERRQ(ierr);

/*
Set function evaluation routine and vector. Whenever the nonlinear
solver needs to compute the nonlinear function, it will call this
routine.
- Note that the final routine argument is the user-defined

context that provides application-specific data for the
function evaluation routine.

*/
ierr = SNESSetFunction(snes,r,FormFunction,&ctx);CHKERRQ(ierr);

/* -
Create matrix data structure; set Jacobian evaluation routine
- */

ierr = MatCreate(PETSC_COMM_WORLD,&J);CHKERRQ(ierr);
ierr = MatSetSizes(J,PETSC_DECIDE,PETSC_DECIDE,N,N);CHKERRQ(ierr);
ierr = MatSetFromOptions(J);CHKERRQ(ierr);
ierr = MatSeqAIJSetPreallocation(J,3,NULL);CHKERRQ(ierr);
ierr = MatMPIAIJSetPreallocation(J,3,NULL,3,NULL);CHKERRQ(ierr);

/*
Set Jacobian matrix data structure and default Jacobian evaluation
routine. Whenever the nonlinear solver needs to compute the
Jacobian matrix, it will call this routine.
- Note that the final routine argument is the user-defined

context that provides application-specific data for the
Jacobian evaluation routine.

*/
ierr = SNESSetJacobian(snes,J,J,FormJacobian,&ctx);CHKERRQ(ierr);

/*
Optionally allow user-provided preconditioner

*/
ierr = PetscOptionsHasName(NULL,NULL,"-user_precond",&flg);CHKERRQ(ierr);
if (flg) {

KSP ksp;
PC pc;
ierr = SNESGetKSP(snes,&ksp);CHKERRQ(ierr);
ierr = KSPGetPC(ksp,&pc);CHKERRQ(ierr);
ierr = PCSetType(pc,PCSHELL);CHKERRQ(ierr);
ierr = PCShellSetApply(pc,MatrixFreePreconditioner);CHKERRQ(ierr);

}

/* -

(continues on next page)

2.4. SNES: Nonlinear Solvers 101

PETSc Users Manual, Release 3.14.2

(continued from previous page)
Customize nonlinear solver; set runtime options

- */

/*
Set an optional user-defined monitoring routine

*/
ierr = PetscViewerDrawOpen(PETSC_COMM_WORLD,0,0,0,0,400,400,&monP.viewer);

↪→CHKERRQ(ierr);
ierr = SNESMonitorSet(snes,Monitor,&monP,0);CHKERRQ(ierr);

/*
Set names for some vectors to facilitate monitoring (optional)

*/
ierr = PetscObjectSetName((PetscObject)x,"Approximate Solution");CHKERRQ(ierr);
ierr = PetscObjectSetName((PetscObject)U,"Exact Solution");CHKERRQ(ierr);

/*
Set SNES/KSP/KSP/PC runtime options, e.g.,

-snes_view -snes_monitor -ksp_type <ksp> -pc_type <pc>
*/
ierr = SNESSetFromOptions(snes);CHKERRQ(ierr);

/*
Set an optional user-defined routine to check the validity of candidate
iterates that are determined by line search methods

*/
ierr = SNESGetLineSearch(snes, &linesearch);CHKERRQ(ierr);
ierr = PetscOptionsHasName(NULL,NULL,"-post_check_iterates",&post_check);

↪→CHKERRQ(ierr);

if (post_check) {
ierr = PetscPrintf(PETSC_COMM_WORLD,"Activating post step checking routine\n");

↪→CHKERRQ(ierr);
ierr = SNESLineSearchSetPostCheck(linesearch,PostCheck,&checkP);CHKERRQ(ierr);
ierr = VecDuplicate(x,&(checkP.last_step));CHKERRQ(ierr);

checkP.tolerance = 1.0;
checkP.user = &ctx;

ierr = PetscOptionsGetReal(NULL,NULL,"-check_tol",&checkP.tolerance,NULL);
↪→CHKERRQ(ierr);
}

ierr = PetscOptionsHasName(NULL,NULL,"-post_setsubksp",&post_setsubksp);
↪→CHKERRQ(ierr);
if (post_setsubksp) {

ierr = PetscPrintf(PETSC_COMM_WORLD,"Activating post setsubksp\n");CHKERRQ(ierr);
ierr = SNESLineSearchSetPostCheck(linesearch,PostSetSubKSP,&checkP1);

↪→CHKERRQ(ierr);
}

ierr = PetscOptionsHasName(NULL,NULL,"-pre_check_iterates",&pre_check);
↪→CHKERRQ(ierr);
if (pre_check) {

ierr = PetscPrintf(PETSC_COMM_WORLD,"Activating pre step checking routine\n");
↪→CHKERRQ(ierr);

(continues on next page)

102 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

(continued from previous page)
ierr = SNESLineSearchSetPreCheck(linesearch,PreCheck,&checkP);CHKERRQ(ierr);

}

/*
Print parameters used for convergence testing (optional) ... just
to demonstrate this routine; this information is also printed with
the option -snes_view

*/
ierr = SNESGetTolerances(snes,&abstol,&rtol,&stol,&maxit,&maxf);CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD,"atol=%g, rtol=%g, stol=%g, maxit=%D, maxf=%D\n

↪→",(double)abstol,(double)rtol,(double)stol,maxit,maxf);CHKERRQ(ierr);

/* -
Initialize application:
Store right-hand-side of PDE and exact solution

- */

/*
Get local grid boundaries (for 1-dimensional DMDA):

xs, xm - starting grid index, width of local grid (no ghost points)
*/
ierr = DMDAGetCorners(ctx.da,&xs,NULL,NULL,&xm,NULL,NULL);CHKERRQ(ierr);

/*
Get pointers to vector data

*/
ierr = DMDAVecGetArray(ctx.da,F,&FF);CHKERRQ(ierr);
ierr = DMDAVecGetArray(ctx.da,U,&UU);CHKERRQ(ierr);

/*
Compute local vector entries

*/
xp = ctx.h*xs;
for (i=xs; i<xs+xm; i++) {

FF[i] = 6.0*xp + PetscPowScalar(xp+1.e-12,6.0); /* +1.e-12 is to prevent 0^6 */
UU[i] = xp*xp*xp;
xp += ctx.h;

}

/*
Restore vectors

*/
ierr = DMDAVecRestoreArray(ctx.da,F,&FF);CHKERRQ(ierr);
ierr = DMDAVecRestoreArray(ctx.da,U,&UU);CHKERRQ(ierr);
if (viewinitial) {

ierr = VecView(U,0);CHKERRQ(ierr);
ierr = VecView(F,0);CHKERRQ(ierr);

}

/* -
Evaluate initial guess; then solve nonlinear system

- */

/*
Note: The user should initialize the vector, x, with the initial guess
for the nonlinear solver prior to calling SNESSolve(). In particular,

(continues on next page)

2.4. SNES: Nonlinear Solvers 103

PETSc Users Manual, Release 3.14.2

(continued from previous page)
to employ an initial guess of zero, the user should explicitly set
this vector to zero by calling VecSet().

*/
ierr = FormInitialGuess(x);CHKERRQ(ierr);
ierr = SNESSolve(snes,NULL,x);CHKERRQ(ierr);
ierr = SNESGetIterationNumber(snes,&its);CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD,"Number of SNES iterations = %D\n",its);

↪→CHKERRQ(ierr);

/* -
Check solution and clean up

- */

/*
Check the error

*/
ierr = VecAXPY(x,none,U);CHKERRQ(ierr);
ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD,"Norm of error %g Iterations %D\n",(double)norm,

↪→its);CHKERRQ(ierr);
if (ctx.sjerr) {

SNESType snestype;
ierr = SNESGetType(snes,&snestype);CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD,"SNES Type %s\n",snestype);CHKERRQ(ierr);

}

/*
Free work space. All PETSc objects should be destroyed when they
are no longer needed.

*/
ierr = PetscViewerDestroy(&monP.viewer);CHKERRQ(ierr);
if (post_check) {ierr = VecDestroy(&checkP.last_step);CHKERRQ(ierr);}
ierr = VecDestroy(&x);CHKERRQ(ierr);
ierr = VecDestroy(&r);CHKERRQ(ierr);
ierr = VecDestroy(&U);CHKERRQ(ierr);
ierr = VecDestroy(&F);CHKERRQ(ierr);
ierr = MatDestroy(&J);CHKERRQ(ierr);
ierr = SNESDestroy(&snes);CHKERRQ(ierr);
ierr = DMDestroy(&ctx.da);CHKERRQ(ierr);
ierr = PetscFinalize();
return ierr;

}

/* --- */
/*

FormInitialGuess - Computes initial guess.

Input/Output Parameter:
. x - the solution vector
*/
PetscErrorCode FormInitialGuess(Vec x)
{
PetscErrorCode ierr;
PetscScalar pfive = .50;

PetscFunctionBeginUser;

(continues on next page)

104 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

(continued from previous page)
ierr = VecSet(x,pfive);CHKERRQ(ierr);
PetscFunctionReturn(0);

}

/* --- */
/*

FormFunction - Evaluates nonlinear function, F(x).

Input Parameters:
. snes - the SNES context
. x - input vector
. ctx - optional user-defined context, as set by SNESSetFunction()

Output Parameter:
. f - function vector

Note:
The user-defined context can contain any application-specific
data needed for the function evaluation.

*/
PetscErrorCode FormFunction(SNES snes,Vec x,Vec f,void *ctx)
{
ApplicationCtx *user = (ApplicationCtx*) ctx;
DM da = user->da;
PetscScalar *xx,*ff,*FF,d;
PetscErrorCode ierr;
PetscInt i,M,xs,xm;
Vec xlocal;

PetscFunctionBeginUser;
ierr = DMGetLocalVector(da,&xlocal);CHKERRQ(ierr);
/*

Scatter ghost points to local vector, using the 2-step process
DMGlobalToLocalBegin(), DMGlobalToLocalEnd().

By placing code between these two statements, computations can
be done while messages are in transition.

*/
ierr = DMGlobalToLocalBegin(da,x,INSERT_VALUES,xlocal);CHKERRQ(ierr);
ierr = DMGlobalToLocalEnd(da,x,INSERT_VALUES,xlocal);CHKERRQ(ierr);

/*
Get pointers to vector data.

- The vector xlocal includes ghost point; the vectors x and f do
NOT include ghost points.

- Using DMDAVecGetArray() allows accessing the values using global ordering
*/
ierr = DMDAVecGetArray(da,xlocal,&xx);CHKERRQ(ierr);
ierr = DMDAVecGetArray(da,f,&ff);CHKERRQ(ierr);
ierr = DMDAVecGetArray(da,user->F,&FF);CHKERRQ(ierr);

/*
Get local grid boundaries (for 1-dimensional DMDA):

xs, xm - starting grid index, width of local grid (no ghost points)
*/
ierr = DMDAGetCorners(da,&xs,NULL,NULL,&xm,NULL,NULL);CHKERRQ(ierr);
ierr = DMDAGetInfo(da,NULL,&M,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,

↪→NULL);CHKERRQ(ierr);
(continues on next page)

2.4. SNES: Nonlinear Solvers 105

PETSc Users Manual, Release 3.14.2

(continued from previous page)

/*
Set function values for boundary points; define local interior grid point range:

xsi - starting interior grid index
xei - ending interior grid index

*/
if (xs == 0) { /* left boundary */

ff[0] = xx[0];
xs++;xm--;

}
if (xs+xm == M) { /* right boundary */

ff[xs+xm-1] = xx[xs+xm-1] - 1.0;
xm--;

}

/*
Compute function over locally owned part of the grid (interior points only)

*/
d = 1.0/(user->h*user->h);
for (i=xs; i<xs+xm; i++) ff[i] = d*(xx[i-1] - 2.0*xx[i] + xx[i+1]) + xx[i]*xx[i] -␣

↪→FF[i];

/*
Restore vectors

*/
ierr = DMDAVecRestoreArray(da,xlocal,&xx);CHKERRQ(ierr);
ierr = DMDAVecRestoreArray(da,f,&ff);CHKERRQ(ierr);
ierr = DMDAVecRestoreArray(da,user->F,&FF);CHKERRQ(ierr);
ierr = DMRestoreLocalVector(da,&xlocal);CHKERRQ(ierr);
PetscFunctionReturn(0);

}

/* --- */
/*

FormJacobian - Evaluates Jacobian matrix.

Input Parameters:
. snes - the SNES context
. x - input vector
. dummy - optional user-defined context (not used here)

Output Parameters:
. jac - Jacobian matrix
. B - optionally different preconditioning matrix
. flag - flag indicating matrix structure
*/
PetscErrorCode FormJacobian(SNES snes,Vec x,Mat jac,Mat B,void *ctx)
{
ApplicationCtx *user = (ApplicationCtx*) ctx;
PetscScalar *xx,d,A[3];
PetscErrorCode ierr;
PetscInt i,j[3],M,xs,xm;
DM da = user->da;

PetscFunctionBeginUser;
if (user->sjerr) {

(continues on next page)

106 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

(continued from previous page)
ierr = SNESSetJacobianDomainError(snes);CHKERRQ(ierr);
PetscFunctionReturn(0);

}
/*

Get pointer to vector data
*/
ierr = DMDAVecGetArrayRead(da,x,&xx);CHKERRQ(ierr);
ierr = DMDAGetCorners(da,&xs,NULL,NULL,&xm,NULL,NULL);CHKERRQ(ierr);

/*
Get range of locally owned matrix

*/
ierr = DMDAGetInfo(da,NULL,&M,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,

↪→NULL);CHKERRQ(ierr);

/*
Determine starting and ending local indices for interior grid points.
Set Jacobian entries for boundary points.

*/

if (xs == 0) { /* left boundary */
i = 0; A[0] = 1.0;

ierr = MatSetValues(jac,1,&i,1,&i,A,INSERT_VALUES);CHKERRQ(ierr);
xs++;xm--;

}
if (xs+xm == M) { /* right boundary */

i = M-1;
A[0] = 1.0;
ierr = MatSetValues(jac,1,&i,1,&i,A,INSERT_VALUES);CHKERRQ(ierr);
xm--;

}

/*
Interior grid points
- Note that in this case we set all elements for a particular

row at once.
*/
d = 1.0/(user->h*user->h);
for (i=xs; i<xs+xm; i++) {

j[0] = i - 1; j[1] = i; j[2] = i + 1;
A[0] = A[2] = d; A[1] = -2.0*d + 2.0*xx[i];
ierr = MatSetValues(jac,1,&i,3,j,A,INSERT_VALUES);CHKERRQ(ierr);

}

/*
Assemble matrix, using the 2-step process:

MatAssemblyBegin(), MatAssemblyEnd().
By placing code between these two statements, computations can be
done while messages are in transition.

Also, restore vector.
*/

ierr = MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = DMDAVecRestoreArrayRead(da,x,&xx);CHKERRQ(ierr);

(continues on next page)

2.4. SNES: Nonlinear Solvers 107

PETSc Users Manual, Release 3.14.2

(continued from previous page)
ierr = MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

PetscFunctionReturn(0);
}

/* --- */
/*

Monitor - Optional user-defined monitoring routine that views the
current iterate with an x-window plot. Set by SNESMonitorSet().

Input Parameters:
snes - the SNES context
its - iteration number
norm - 2-norm function value (may be estimated)
ctx - optional user-defined context for private data for the

monitor routine, as set by SNESMonitorSet()

Note:
See the manpage for PetscViewerDrawOpen() for useful runtime options,
such as -nox to deactivate all x-window output.

*/
PetscErrorCode Monitor(SNES snes,PetscInt its,PetscReal fnorm,void *ctx)
{
PetscErrorCode ierr;
MonitorCtx *monP = (MonitorCtx*) ctx;
Vec x;

PetscFunctionBeginUser;
ierr = PetscPrintf(PETSC_COMM_WORLD,"iter = %D,SNES Function norm %g\n",its,

↪→(double)fnorm);CHKERRQ(ierr);
ierr = SNESGetSolution(snes,&x);CHKERRQ(ierr);
ierr = VecView(x,monP->viewer);CHKERRQ(ierr);
PetscFunctionReturn(0);

}

/* --- */
/*

PreCheck - Optional user-defined routine that checks the validity of
candidate steps of a line search method. Set by SNESLineSearchSetPreCheck().

Input Parameters:
snes - the SNES context
xcurrent - current solution
y - search direction and length

Output Parameters:
y - proposed step (search direction and length) (possibly changed)
changed_y - tells if the step has changed or not

*/
PetscErrorCode PreCheck(SNESLineSearch linesearch,Vec xcurrent,Vec y, PetscBool␣
↪→*changed_y, void * ctx)
{
PetscFunctionBeginUser;
*changed_y = PETSC_FALSE;
PetscFunctionReturn(0);

}

(continues on next page)

108 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

(continued from previous page)

/* --- */
/*

PostCheck - Optional user-defined routine that checks the validity of
candidate steps of a line search method. Set by SNESLineSearchSetPostCheck().

Input Parameters:
snes - the SNES context
ctx - optional user-defined context for private data for the

monitor routine, as set by SNESLineSearchSetPostCheck()
xcurrent - current solution
y - search direction and length
x - the new candidate iterate

Output Parameters:
y - proposed step (search direction and length) (possibly changed)
x - current iterate (possibly modified)

*/
PetscErrorCode PostCheck(SNESLineSearch linesearch,Vec xcurrent,Vec y,Vec x,PetscBool␣
↪→ *changed_y,PetscBool *changed_x, void * ctx)
{
PetscErrorCode ierr;
PetscInt i,iter,xs,xm;
StepCheckCtx *check;
ApplicationCtx *user;
PetscScalar *xa,*xa_last,tmp;
PetscReal rdiff;
DM da;
SNES snes;

PetscFunctionBeginUser;
*changed_x = PETSC_FALSE;
*changed_y = PETSC_FALSE;

ierr = SNESLineSearchGetSNES(linesearch, &snes);CHKERRQ(ierr);
check = (StepCheckCtx*)ctx;
user = check->user;
ierr = SNESGetIterationNumber(snes,&iter);CHKERRQ(ierr);

/* iteration 1 indicates we are working on the second iteration */
if (iter > 0) {

da = user->da;
ierr = PetscPrintf(PETSC_COMM_WORLD,"Checking candidate step at iteration %D with␣

↪→tolerance %g\n",iter,(double)check->tolerance);CHKERRQ(ierr);

/* Access local array data */
ierr = DMDAVecGetArray(da,check->last_step,&xa_last);CHKERRQ(ierr);
ierr = DMDAVecGetArray(da,x,&xa);CHKERRQ(ierr);
ierr = DMDAGetCorners(da,&xs,NULL,NULL,&xm,NULL,NULL);CHKERRQ(ierr);

/*
If we fail the user-defined check for validity of the candidate iterate,
then modify the iterate as we like. (Note that the particular modification
below is intended simply to demonstrate how to manipulate this data, not
as a meaningful or appropriate choice.)

(continues on next page)

2.4. SNES: Nonlinear Solvers 109

PETSc Users Manual, Release 3.14.2

(continued from previous page)
*/
for (i=xs; i<xs+xm; i++) {
if (!PetscAbsScalar(xa[i])) rdiff = 2*check->tolerance;
else rdiff = PetscAbsScalar((xa[i] - xa_last[i])/xa[i]);
if (rdiff > check->tolerance) {

tmp = xa[i];
xa[i] = .5*(xa[i] + xa_last[i]);
*changed_x = PETSC_TRUE;
ierr = PetscPrintf(PETSC_COMM_WORLD," Altering entry %D: x=%g, x_last=

↪→%g, diff=%g, x_new=%g\n",i,(double)PetscAbsScalar(tmp),(double)PetscAbsScalar(xa_
↪→last[i]),(double)rdiff,(double)PetscAbsScalar(xa[i]));CHKERRQ(ierr);

}
}
ierr = DMDAVecRestoreArray(da,check->last_step,&xa_last);CHKERRQ(ierr);
ierr = DMDAVecRestoreArray(da,x,&xa);CHKERRQ(ierr);

}
ierr = VecCopy(x,check->last_step);CHKERRQ(ierr);
PetscFunctionReturn(0);

}

/* --- */
/*

PostSetSubKSP - Optional user-defined routine that reset SubKSP options when␣
↪→hierarchical bjacobi PC is used

e.g,
mpiexec -n 8 ./ex3 -nox -n 10000 -ksp_type fgmres -pc_type bjacobi -pc_bjacobi_

↪→blocks 4 -sub_ksp_type gmres -sub_ksp_max_it 3 -post_setsubksp -sub_ksp_rtol 1.e-16
Set by SNESLineSearchSetPostCheck().

Input Parameters:
linesearch - the LineSearch context
xcurrent - current solution
y - search direction and length
x - the new candidate iterate

Output Parameters:
y - proposed step (search direction and length) (possibly changed)
x - current iterate (possibly modified)

*/
PetscErrorCode PostSetSubKSP(SNESLineSearch linesearch,Vec xcurrent,Vec y,Vec x,
↪→PetscBool *changed_y,PetscBool *changed_x, void * ctx)
{
PetscErrorCode ierr;
SetSubKSPCtx *check;
PetscInt iter,its,sub_its,maxit;
KSP ksp,sub_ksp,*sub_ksps;
PC pc;
PetscReal ksp_ratio;
SNES snes;

PetscFunctionBeginUser;
ierr = SNESLineSearchGetSNES(linesearch, &snes);CHKERRQ(ierr);
check = (SetSubKSPCtx*)ctx;
ierr = SNESGetIterationNumber(snes,&iter);CHKERRQ(ierr);
ierr = SNESGetKSP(snes,&ksp);CHKERRQ(ierr);

(continues on next page)

110 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

(continued from previous page)
ierr = KSPGetPC(ksp,&pc);CHKERRQ(ierr);
ierr = PCBJacobiGetSubKSP(pc,NULL,NULL,&sub_ksps);CHKERRQ(ierr);
sub_ksp = sub_ksps[0];
ierr = KSPGetIterationNumber(ksp,&its);CHKERRQ(ierr); /* outer KSP␣

↪→iteration number */
ierr = KSPGetIterationNumber(sub_ksp,&sub_its);CHKERRQ(ierr); /* inner KSP␣

↪→iteration number */

if (iter) {
ierr = PetscPrintf(PETSC_COMM_WORLD," ...PostCheck snes iteration %D, ksp_

↪→it %D %D, subksp_it %D\n",iter,check->its0,its,sub_its);CHKERRQ(ierr);
ksp_ratio = ((PetscReal)(its))/check->its0;
maxit = (PetscInt)(ksp_ratio*sub_its + 0.5);
if (maxit < 2) maxit = 2;
ierr = KSPSetTolerances(sub_ksp,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT,maxit);

↪→CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD," ...ksp_ratio %g, new maxit %D\n\n",

↪→(double)ksp_ratio,maxit);CHKERRQ(ierr);
}
check->its0 = its; /* save current outer KSP iteration number */
PetscFunctionReturn(0);

}

/* --- */
/*

MatrixFreePreconditioner - This routine demonstrates the use of a
user-provided preconditioner. This code implements just the null
preconditioner, which of course is not recommended for general use.

Input Parameters:
+ pc - preconditioner
- x - input vector

Output Parameter:
. y - preconditioned vector
*/
PetscErrorCode MatrixFreePreconditioner(PC pc,Vec x,Vec y)
{
PetscErrorCode ierr;
ierr = VecCopy(x,y);CHKERRQ(ierr);
return 0;

}

Table Jacobian Options summarizes the various matrix situations that SNES supports. In particular, different
linear system matrices and preconditioning matrices are allowed, as well as both matrix-free and application-
provided preconditioners. If ex3.c is run with the options -snes_mf and -user_precond then it uses a
matrix-free application of the matrix-vector multiple and a user provided matrix free Jacobian.

2.4. SNES: Nonlinear Solvers 111

PETSc Users Manual, Release 3.14.2

Table 2.10: Jacobian Options
Matrix
Use

Conventional Matrix Formats Matrix-free versions

Jaco-
bian
Matrix

Create matrix with MatCre-
ate()∗. Assemble matrix
with user-defined routine †

Create matrix with MatCreateShell(). Use Mat-
ShellSetOperation() to set various matrix actions, or
use MatCreateMFFD() or MatCreateSNESMF().

Pre-
condi-
tioning
Matrix

Create matrix with MatCre-
ate()∗. Assemble matrix
with user-defined routine †

Use SNESGetKSP() and KSPGetPC() to access the PC,
then use PCSetType(pc, PCSHELL) followed by PC-
ShellSetApply().

∗ Use either the generic MatCreate() or a format-specific variant such as MatCreateAIJ().
† Set user-defined matrix formation routine with SNESSetJacobian() or with a DM variant such as
DMDASNESSetJacobianLocal()

2.4.6 Finite Difference Jacobian Approximations

PETSc provides some tools to help approximate the Jacobian matrices efficiently via finite differences. These
tools are intended for use in certain situations where one is unable to compute Jacobian matrices analytically,
and matrix-free methods do not work well without a preconditioner, due to very poor conditioning. The
approximation requires several steps:

• First, one colors the columns of the (not yet built) Jacobian matrix, so that columns of the same color
do not share any common rows.

• Next, one creates a MatFDColoring data structure that will be used later in actually computing the
Jacobian.

• Finally, one tells the nonlinear solvers of SNES to use the SNESComputeJacobianDefaultColor()
routine to compute the Jacobians.

A code fragment that demonstrates this process is given below.

ISColoring iscoloring;
MatFDColoring fdcoloring;
MatColoring coloring;

/*
This initializes the nonzero structure of the Jacobian. This is artificial
because clearly if we had a routine to compute the Jacobian we wouldn't
need to use finite differences.

*/
FormJacobian(snes,x, &J, &J, &user);

/*
Color the matrix, i.e. determine groups of columns that share no common

rows. These columns in the Jacobian can all be computed simultaneously.
*/
MatColoringCreate(J, &coloring);
MatColoringSetType(coloring,MATCOLORINGSL);
MatColoringSetFromOptions(coloring);
MatColoringApply(coloring, &iscoloring);
MatColoringDestroy(&coloring);

(continues on next page)

112 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

(continued from previous page)
/*

Create the data structure that SNESComputeJacobianDefaultColor() uses
to compute the actual Jacobians via finite differences.

*/
MatFDColoringCreate(J,iscoloring, &fdcoloring);
ISColoringDestroy(&iscoloring);
MatFDColoringSetFunction(fdcoloring,(PetscErrorCode (*)(void))FormFunction, &user);
MatFDColoringSetFromOptions(fdcoloring);

/*
Tell SNES to use the routine SNESComputeJacobianDefaultColor()
to compute Jacobians.

*/
SNESSetJacobian(snes,J,J,SNESComputeJacobianDefaultColor,fdcoloring);

Of course, we are cheating a bit. If we do not have an analytic formula for computing the Jacobian, then how
do we know what its nonzero structure is so that it may be colored? Determining the structure is problem
dependent, but fortunately, for most structured grid problems (the class of problems for which PETSc was
originally designed) if one knows the stencil used for the nonlinear function one can usually fairly easily
obtain an estimate of the location of nonzeros in the matrix. This is harder in the unstructured case, but
one typically knows where the nonzero entries are from the mesh topology and distribution of degrees of
freedom. If using DMPlex (DMPlex: Unstructured Grids in PETSc) for unstructured meshes, the nonzero
locations will be identified in DMCreateMatrix() and the procedure above can be used. Most external
packages for unstructured meshes have similar functionality.

One need not necessarily use a MatColoring object to determine a coloring. For example, if a grid can be
colored directly (without using the associated matrix), then that coloring can be provided to MatFDCol-
oringCreate(). Note that the user must always preset the nonzero structure in the matrix regardless of
which coloring routine is used.

PETSc provides the following coloring algorithms, which can be selected using MatColoringSetType()
or via the command line argument -mat_coloring_type.

Algorithm MatColoringType -mat_coloring_type Parallel
smallest-last [MoreSGH84] MATCOLORINGSL sl No
largest-first [MoreSGH84] MATCOLORINGLF lf No
incidence-degree [MoreSGH84] MATCOLORINGID id No
Jones-Plassmann [JP93] MATCOLORINGJP jp Yes
Greedy MATCOLORINGGREEDY greedy Yes
Natural (1 color per column) MATCOLORINGNATURAL natural Yes
Power (Ak followed by 1-coloring) MATCOLORINGPOWER power Yes

As for the matrix-free computation of Jacobians (Matrix-Free Methods), two parameters affect the accuracy
of the finite difference Jacobian approximation. These are set with the command

MatFDColoringSetParameters(MatFDColoring fdcoloring,PetscReal rerror,PetscReal umin);

The parameter rerror is the square root of the relative error in the function evaluations, erel; the default
is the square root of machine epsilon (about 10−8 in double precision), which assumes that the functions are
evaluated approximately to floating-point precision accuracy. The second parameter, umin, is a bit more
involved; its default is 10e−6 . Column i of the Jacobian matrix (denoted by F:i) is approximated by the
formula

F ′
:i ≈

F (u+ h ∗ dxi)− F (u)

h

2.4. SNES: Nonlinear Solvers 113

PETSc Users Manual, Release 3.14.2

where h is computed via:

h = erel ·

{
ui if |ui| > umin

umin · sign(ui) otherwise.

for MATMFFD_DS or:

h = erel
√
(‖u‖)

for MATMFFD_WP (default). These parameters may be set from the options database with

-mat_fd_coloring_err <err>
-mat_fd_coloring_umin <umin>
-mat_fd_type <htype>

Note that MatColoring type MATCOLORINGSL, MATCOLORINGLF, and MATCOLORINGID are sequential
algorithms. MATCOLORINGJP and MATCOLORINGGREEDY are parallel algorithms, although in practice they
may create more colors than the sequential algorithms. If one computes the coloring iscoloring reason-
ably with a parallel algorithm or by knowledge of the discretization, the routine MatFDColoringCreate()
is scalable. An example of this for 2D distributed arrays is given below that uses the utility routine DMCre-
ateColoring().

DMCreateColoring(da,IS_COLORING_GHOSTED, &iscoloring);
MatFDColoringCreate(J,iscoloring, &fdcoloring);
MatFDColoringSetFromOptions(fdcoloring);
ISColoringDestroy(&iscoloring);

Note that the routine MatFDColoringCreate() currently is only supported for the AIJ and BAIJ matrix
formats.

2.4.7 Variational Inequalities

SNES can also solve variational inequalities with box constraints. These are nonlinear algebraic systems with
additional inequality constraints on some or all of the variables: Lui ≤ ui ≤ Hui. Some or all of the lower
bounds may be negative infinity (indicated to PETSc with SNES_VI_NINF) and some or all of the upper
bounds may be infinity (indicated by SNES_VI_INF). The command

SNESVISetVariableBounds(SNES,Vec Lu,Vec Hu);

is used to indicate that one is solving a variational inequality. The option -snes_vi_monitor turns on
extra monitoring of the active set associated with the bounds and -snes_vi_type allows selecting from
several VI solvers, the default is preferred.

2.4.8 Nonlinear Preconditioning

The mathematical framework of nonlinear preconditioning is explained in detail in [BKST15]. Nonlinear
preconditioning in PETSc involves the use of an inner SNES instance to define the step for an outer SNES
instance. The inner instance may be extracted using

SNESGetNPC(SNES snes,SNES *npc);

and passed run-time options using the -npc_ prefix. Nonlinear preconditioning comes in two flavors: left
and right. The side may be changed using -snes_npc_side or SNESSetNPCSide(). Left nonlinear
preconditioning redefines the nonlinear function as the action of the nonlinear preconditioner M;

FM (x) = M(x,b)− x.

114 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

Right nonlinear preconditioning redefines the nonlinear function as the function on the action of the nonlinear
preconditioner;

F(M(x,b)) = b,

which can be interpreted as putting the preconditioner into “striking distance” of the solution by outer
acceleration.

In addition, basic patterns of solver composition are available with the SNESType SNESCOM-
POSITE. This allows for two or more SNES instances to be combined additively or multiplica-
tively. By command line, a set of SNES types may be given by comma separated list ar-
gument to -snes_composite_sneses. There are additive (SNES_COMPOSITE_ADDITIVE),
additive with optimal damping (SNES_COMPOSITE_ADDITIVEOPTIMAL), and multiplicative
(SNES_COMPOSITE_MULTIPLICATIVE) variants which may be set with

SNESCompositeSetType(SNES,SNESCompositeType);

New subsolvers may be added to the composite solver with

SNESCompositeAddSNES(SNES,SNESType);

and accessed with

SNESCompositeGetSNES(SNES,PetscInt,SNES *);

2.5 TS: Scalable ODE and DAE Solvers

The TS library provides a framework for the scalable solution of ODEs and DAEs arising from the discretiza-
tion of time-dependent PDEs.

Simple Example: Consider the PDE

ut = uxx

discretized with centered finite differences in space yielding the semi-discrete equation

(ui)t =
ui+1 − 2ui + ui−1

h2
,

ut = Ãu;

or with piecewise linear finite elements approximation in space u(x, t)
.
=

∑
i ξi(t)ϕi(x) yielding the semi-

discrete equation

Bξ′(t) = Aξ(t)

Now applying the backward Euler method results in

(B − dtnA)un+1 = Bun,

in which

un
i = ξi(tn)

.
= u(xi, tn),

ξ′(tn+1)
.
=

un+1
i − un

i

dtn
,

2.5. TS: Scalable ODE and DAE Solvers 115

PETSc Users Manual, Release 3.14.2

A is the stiffness matrix, and B is the identity for finite differences or the mass matrix for the finite element
method.

The PETSc interface for solving time dependent problems assumes the problem is written in the form

F (t, u, u̇) = G(t, u), u(t0) = u0.

In general, this is a differential algebraic equation (DAE)4. For ODE with nontrivial mass matrices such as
arise in FEM, the implicit/DAE interface significantly reduces overhead to prepare the system for algebraic
solvers (SNES/KSP) by having the user assemble the correctly shifted matrix. Therefore this interface is also
useful for ODE systems.

To solve an ODE or DAE one uses:

• Function F (t, u, u̇)

TSSetIFunction(TS ts,Vec R,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,Vec,void*),
↪→void *funP);

The vector R is an optional location to store the residual. The arguments to the function f() are the
timestep context, current time, input state u, input time derivative u̇, and the (optional) user-provided
context funP. If F (t, u, u̇) = u̇ then one need not call this function.

• Function G(t, u), if it is nonzero, is provided with the function

TSSetRHSFunction(TS ts,Vec R,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void␣
↪→*funP);

• Jacobian σFu̇(t
n, un, u̇n) + Fu(t

n, un, u̇n)

If using a fully implicit or semi-implicit (IMEX) method one also can provide an appropriate
(approximate) Jacobian matrix of F ().

TSSetIJacobian(TS ts,Mat A,Mat B,PetscErrorCode (*fjac)(TS,PetscReal,Vec,Vec,
↪→PetscReal,Mat,Mat,void*),void *jacP);

The arguments for the function fjac() are the timestep context, current time, input state u, input
derivative u̇, input shift σ, matrix A, preconditioning matrix B, and the (optional) user-provided
context jacP.

The Jacobian needed for the nonlinear system is, by the chain rule,

dF

dun
=

∂F

∂u̇
|un

∂u̇

∂u
|un +

∂F

∂u
|un .

For any ODE integration method the approximation of u̇ is linear in un hence ∂u̇
∂u |un = σ, where the

shift σ depends on the ODE integrator and time step but not on the function being integrated. Thus

dF

dun
= σFu̇(t

n, un, u̇n) + Fu(t
n, un, u̇n).

This explains why the user provide Jacobian is in the given form for all integration methods. An
equivalent way to derive the formula is to note that

F (tn, un, u̇n) = F (tn, un, w + σ ∗ un)

where w is some linear combination of previous time solutions of u so that

dF

dun
= σFu̇(t

n, un, u̇n) + Fu(t
n, un, u̇n)

4 If the matrix Fu̇(t) = ∂F/∂u̇ is nonsingular then it is an ODE and can be transformed to the standard explicit form,
although this transformation may not lead to efficient algorithms.

116 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

again by the chain rule.

For example, consider backward Euler’s method applied to the ODE F (t, u, u̇) = u̇ − f(t, u) with
u̇ = (un − un−1)/δt and ∂u̇

∂u |un = 1/δt resulting in

dF

dun
= (1/δt)Fu̇ + Fu(t

n, un, u̇n).

But Fu̇ = 1, in this special case, resulting in the expected Jacobian I/δt− fu(t, u
n).

• Jacobian Gu

If using a fully implicit method and the function G() is provided, one also can provide an appropriate
(approximate) Jacobian matrix of G().

TSSetRHSJacobian(TS ts,Mat A,Mat B,
PetscErrorCode (*fjac)(TS,PetscReal,Vec,Mat,Mat,void*),void *jacP);

The arguments for the function fjac() are the timestep context, current time, input state u, matrix
A, preconditioning matrix B, and the (optional) user-provided context jacP.

Providing appropriate F () and G() for your problem allows for the easy runtime switching between explicit,
semi-implicit (IMEX), and fully implicit methods.

2.5.1 Basic TS Options

The user first creates a TS object with the command

int TSCreate(MPI_Comm comm,TS *ts);

int TSSetProblemType(TS ts,TSProblemType problemtype);

The TSProblemType is one of TS_LINEAR or TS_NONLINEAR.

To set up TS for solving an ODE, one must set the “initial conditions” for the ODE with

TSSetSolution(TS ts, Vec initialsolution);

One can set the solution method with the routine

TSSetType(TS ts,TSType type);

Currently supported types are TSEULER, TSRK (Runge-Kutta), TSBEULER, TSCN (Crank-Nicolson),
TSTHETA, TSGLLE (generalized linear), TSPSEUDO, and TSSUNDIALS (only if the Sundials package is
installed), or the command line option
-ts_type euler,rk,beuler,cn,theta,gl,pseudo,sundials,eimex,arkimex,rosw.

A list of available methods is given in the following table.

2.5. TS: Scalable ODE and DAE Solvers 117

PETSc Users Manual, Release 3.14.2

Table 2.11: Time integration schemes
TS
Name

Reference Class Type Or-
der

euler forward Euler one-step explicit 1
ssp multistage SSP [Ket08] Runge-Kutta explicit ≤ 4
rk* multiscale Runge-Kutta explicit ≥ 1
beuler backward Euler one-step implicit 1
cn Crank-Nicolson one-step implicit 2
theta* theta-method one-step implicit ≤ 2
alpha alpha-method [JWH00] one-step implicit 2
gl general linear [BJW07] multistep-

multistage
implicit ≤ 3

eimex extrapolated IMEX [CS10] one-step ≥ 1, adaptive
arkimex See IMEX Runge-Kutta schemes IMEX Runge-

Kutta
IMEX 1− 5

rosw See Rosenbrock W-schemes Rosenbrock-W linearly implicit 1− 4
glee See GL schemes with global error estima-

tion
GL with global er-
ror

explicit and im-
plicit

1− 3

Set the initial time with the command

TSSetTime(TS ts,PetscReal time);

One can change the timestep with the command

TSSetTimeStep(TS ts,PetscReal dt);

can determine the current timestep with the routine

TSGetTimeStep(TS ts,PetscReal* dt);

Here, “current” refers to the timestep being used to attempt to promote the solution form un to un+1.

One sets the total number of timesteps to run or the total time to run (whatever is first) with the commands

TSSetMaxSteps(TS ts,PetscInt maxsteps);
TSSetMaxTime(TS ts,PetscReal maxtime);

and determines the behavior near the final time with

TSSetExactFinalTime(TS ts,TSExactFinalTimeOption eftopt);

where eftopt is one of TS_EXACTFINALTIME_STEPOVER,TS_EXACTFINALTIME_INTERPOLATE, or
TS_EXACTFINALTIME_MATCHSTEP. One performs the requested number of time steps with

TSSolve(TS ts,Vec U);

The solve call implicitly sets up the timestep context; this can be done explicitly with

TSSetUp(TS ts);

One destroys the context with

TSDestroy(TS *ts);

118 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

and views it with

TSView(TS ts,PetscViewer viewer);

In place of TSSolve(), a single step can be taken using

TSStep(TS ts);

2.5.2 DAE Formulations

You can find a discussion of DAEs in [AP98] or Scholarpedia. In PETSc, TS deals with the semi-discrete
form of the equations, so that space has already been discretized. If the DAE depends explicitly on the
coordinate x, then this will just appear as any other data for the equation, not as an explicit argument.
Thus we have

F (t, u, u̇) = 0

In this form, only fully implicit solvers are appropriate. However, specialized solvers for restricted forms of
DAE are supported by PETSc. Below we consider an ODE which is augmented with algebraic constraints
on the variables.

Hessenberg Index-1 DAE

This is a Semi-Explicit Index-1 DAE which has the form
u̇ = f(t, u, z)

0 = h(t, u, z)

where z is a new constraint variable, and the Jacobian dh
dz is non-singular everywhere. We have suppressed

the x dependence since it plays no role here. Using the non-singularity of the Jacobian and the Implicit
Function Theorem, we can solve for z in terms of u. This means we could, in principle, plug z(u) into the
first equation to obtain a simple ODE, even if this is not the numerical process we use. Below we show that
this type of DAE can be used with IMEX schemes.

Hessenberg Index-2 DAE

This DAE has the form
u̇ = f(t, u, z)

0 = h(t, u)

Notice that the constraint equation h is not a function of the constraint variable :math:’z’. This means that
we cannot naively invert as we did in the index-1 case. Our strategy will be to convert this into an index-1
DAE using a time derivative, which loosely corresponds to the idea of index being the number of derivatives
necessary to get back to an ODE. If we differentiate the constraint equation with respect to time, we can
use the ODE to simplify it,

0 = ḣ(t, u)

=
dh

du
u̇+

∂h

∂t

=
dh

du
f(t, u, z) +

∂h

∂t

If the Jacobian dh
du

df
dz is non-singular, then we have precisely a semi-explicit index-1 DAE, and we can once

again use the PETSc IMEX tools to solve it. A common example of an index-2 DAE is the incompressible

2.5. TS: Scalable ODE and DAE Solvers 119

http://www.scholarpedia.org/article/Differential-algebraic_equations

PETSc Users Manual, Release 3.14.2

Navier-Stokes equations, since the continuity equation ∇·u = 0 does not involve the pressure. Using PETSc
IMEX with the above conversion then corresponds to the Segregated Runge-Kutta method applied to this
equation [OColomesB16].

2.5.3 Using Implicit-Explicit (IMEX) Methods

For “stiff” problems or those with multiple time scales F () will be treated implicitly using a method suitable
for stiff problems and G() will be treated explicitly when using an IMEX method like TSARKIMEX. F ()
is typically linear or weakly nonlinear while G() may have very strong nonlinearities such as arise in non-
oscillatory methods for hyperbolic PDE. The user provides three pieces of information, the APIs for which
have been described above.

• “Slow” part G(t, u) using TSSetRHSFunction().

• “Stiff” part F (t, u, u̇) using TSSetIFunction().

• Jacobian Fu + σFu̇ using TSSetIJacobian().

The user needs to set TSSetEquationType() to TS_EQ_IMPLICIT or higher if the problem is implicit;
e.g., F (t, u, u̇) = Mu̇− f(t, u), where M is not the identity matrix:

• the problem is an implicit ODE (defined implicitly through TSSetIFunction()) or

• a DAE is being solved.

An IMEX problem representation can be made implicit by setting TSARKIMEXSetFullyImplicit().

In PETSc, DAEs and ODEs are formulated as F (t, u, u̇) = G(t, u), where F () is meant to be integrated
implicitly and G() explicitly. An IMEX formulation such as Mu̇ = f(t, u) + g(t, u) requires the user to
provide M−1g(t, u) or solve g(t, u) −Mx = 0 in place of G(t, u). General cases such as F (t, u, u̇) = G(t, u)
are not amenable to IMEX Runge-Kutta, but can be solved by using fully implicit methods. Some use-case
examples for TSARKIMEX are listed in Table 2.5.3 and a list of methods with a summary of their properties
is given in IMEX Runge-Kutta schemes.

u̇ = g(t, u) nonstiff ODE
F (t, u, u̇) = u̇

G(t, u) = g(t, u)

Mu̇ = g(t, u) nonstiff ODE with mass
matrix

F (t, u, u̇) = u̇

G(t, u) = M−1g(t, u)

u̇ = f(t, u) stiff ODE
F (t, u, u̇) = u̇− f(t, u)

G(t, u) = 0

Mu̇ = f(t, u) stiff ODE with mass ma-
trix

F (t, u, u̇) = Mu̇− f(t, u)

G(t, u) = 0

u̇ = f(t, u) + g(t, u) stiff-nonstiff ODE
F (t, u, u̇) = u̇− f(t, u)

G(t, u) = g(t, u)

Mu̇ = f(t, u) + g(t, u) stiff-nonstiff ODE with
mass matrix

F (t, u, u̇) = Mu̇− f(t, u)

G(t, u) = M−1g(t, u)

u̇ = f(t, u, z) + g(t, u, z)

0 = h(t, y, z)
semi-explicit index-1
DAE

F (t, u, u̇) =

(
u̇− f(t, u, z)
h(t, u, z)

)
G(t, u) = g(t, u)

f(t, u, u̇) = 0 fully implicit
ODE/DAE

F (t, u, u̇) = f(t, u, u̇)

G(t, u) = 0
; the user needs to set TS-

SetEquationType() to TS_EQ_IMPLICIT or
higher

120 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

Table 2.12 lists of the currently available IMEX Runge-Kutta schemes. For each method, it gives the -
ts_arkimex_type name, the reference, the total number of stages/implicit stages, the order/stage-order,
the implicit stability properties (IM), stiff accuracy (SA), the existence of an embedded scheme, and dense
output (DO).

Table 2.12: IMEX Runge-Kutta schemes
Name Reference Stages

(IM)
Order
(Stage)

IM SA Em-
bed

DO Remarks

a2 based on CN 2 (1) 2 (2) A-
Stable

yes yes (1) yes
(2)

l2 SSP2(2,2,2)
[PR05]

2 (2) 2 (1) L-
Stable

yes yes (1) yes
(2)

SSP
SDIRK

ars122 ARS122
[ARS97]

2 (1) 3 (1) A-
Stable

yes yes (1) yes
(2)

2c [GKC13] 3 (2) 2 (2) L-
Stable

yes yes (1) yes
(2)

SDIRK

2d [GKC13] 3 (2) 2 (2) L-
Stable

yes yes (1) yes
(2)

SDIRK

2e [GKC13] 3 (2) 2 (2) L-
Stable

yes yes (1) yes
(2)

SDIRK

prssp2 PRS(3,3,2)
[PR05]

3 (3) 3 (1) L-
Stable

yes no no SSP

3 [KC03] 4 (3) 3 (2) L-
Stable

yes yes (2) yes
(2)

SDIRK

bpr3 [BPR11] 5 (4) 3 (2) L-
Stable

yes no no SDIRK

ars443 [ARS97] 5 (4) 3 (1) L-
Stable

yes no no SDIRK

4 [KC03] 6 (5) 4 (2) L-
Stable

yes yes (3) yes SDIRK

5 [KC03] 8 (7) 5 (2) L-
Stable

yes yes (4) yes
(3)

SDIRK

ROSW are linearized implicit Runge-Kutta methods known as Rosenbrock W-methods. They can accom-
modate inexact Jacobian matrices in their formulation. A series of methods are available in PETSc are listed
in Table 2.13 below. For each method, it gives the reference, the total number of stages and implicit stages,
the scheme order and stage order, the implicit stability properties (IM), stiff accuracy (SA), the existence
of an embedded scheme, dense output (DO), the capacity to use inexact Jacobian matrices (-W), and high
order integration of differential algebraic equations (PDAE).

2.5. TS: Scalable ODE and DAE Solvers 121

PETSc Users Manual, Release 3.14.2

Table 2.13: Rosenbrock W-schemes
TS ReferenceStages

(IM)
Order
(Stage)

IM SA Embed DO -W PDAE Remarks

theta1 classical 1(1) 1(1) L-
Stable

• • • • • •

theta2 classical 1(1) 2(2) A-
Stable

• • • • • •

2m Zoltan 2(2) 2(1) L-
Stable

No Yes(1) Yes(2) Yes No SSP

2p Zoltan 2(2) 2(1) L-
Stable

No Yes(1) Yes(2) Yes No SSP

ra3pw [RA05] 3(3) 3(1) A-
Stable

No Yes Yes(2) No Yes(3) •

ra34pw2 [RA05] 4(4) 3(1) L-
Stable

Yes Yes Yes(3) Yes Yes(3) •

rodas3 [SVB+97]4(4) 3(1) L-
Stable

Yes Yes No No Yes •

sandu3 [SVB+97]3(3) 3(1) L-
Stable

Yes Yes Yes(2) No No •

assp3p3s1cunpub. 3(2) 3(1) A-
Stable

No Yes Yes(2) Yes No SSP

lassp3p4s2cunpub. 4(3) 3(1) L-
Stable

No Yes Yes(3) Yes No SSP

lassp3p4s2cunpub. 4(3) 3(1) L-
Stable

No Yes Yes(3) Yes No SSP

ark3 unpub. 4(3) 3(1) L-
Stable

No Yes Yes(3) Yes No IMEX-
RK

2.5.4 GLEE methods

In this section, we describe explicit and implicit time stepping methods with global error estimation that
are introduced in [Con16]. The solution vector for a GLEE method is either [y, ỹ] or [y,ε], where y is the
solution, ỹ is the “auxiliary solution,” and ε is the error. The working vector that TSGLEE uses is Y = [y,ỹ],
or [y,ε]. A GLEE method is defined by

• (p, r, s): (order, steps, and stages),

• γ: factor representing the global error ratio,

• A,U,B, V : method coefficients,

• S: starting method to compute the working vector from the solution (say at the beginning of time
integration) so that Y = Sy,

• F : finalizing method to compute the solution from the working vector,y = FY .

• Fembed: coefficients for computing the auxiliary solution ỹ from the working vector (ỹ = FembedY),

• Ferror: coefficients to compute the estimated error vector from the working vector (ε = FerrorY).

• Serror: coefficients to initialize the auxiliary solution (ỹ or ε) from a specified error vector (ε). It is
currently implemented only for r = 2. We have yaux = Serror[0] ∗ ε + Serror[1] ∗ y, where yaux is the
2nd component of the working vector Y .

122 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

The methods can be described in two mathematically equivalent forms: propagate two components (“yỹ
form”) and propagating the solution and its estimated error (“yε form”). The two forms are not explicitly
specified in TSGLEE; rather, the specific values of B,U, S, F, Fembed, and Ferror characterize whether the
method is in yỹ or yε form.

The API used by this TS method includes:

• TSGetSolutionComponents: Get all the solution components of the working vector

ierr = TSGetSolutionComponents(TS,int*,Vec*)

Call with NULL as the last argument to get the total number of components in the working vector Y
(this is r (not r − 1)), then call to get the i-th solution component.

• TSGetAuxSolution: Returns the auxiliary solution ỹ (computed as FembedY)

ierr = TSGetAuxSolution(TS,Vec*)

• TSGetTimeError: Returns the estimated error vector ε (computed as FerrorY if n = 0 or restores
the error estimate at the end of the previous step if n = −1)

ierr = TSGetTimeError(TS,PetscInt n,Vec*)

• TSSetTimeError: Initializes the auxiliary solution (ỹ or ε) for a specified initial error.

ierr = TSSetTimeError(TS,Vec)

The local error is estimated as ε(n+1)−ε(n). This is to be used in the error control. The error in yỹ GLEE
is ε(n) = 1

1−γ ∗ (ỹ(n)− y(n)).

Note that y and ỹ are reported to TSAdapt basic (TSADAPTBASIC), and thus it computes the local error
as εloc = (ỹ − y). However, the actual local error is εloc = εn+1 − εn = 1

1−γ ∗ [(ỹ − y)n+1 − (ỹ − y)n].

Table 2.14 lists currently available GL schemes with global error estimation [Con16].

Table 2.14: GL schemes with global error estimation
TS Reference IM/EX (p, r, s) γ Form Notes
TSGLEEi1 BE1 IM (1, 3, 2) 0.5 yε Based on backward Euler
TSGLEE23 23 EX (2, 3, 2) 0 yε
TSGLEE24 24 EX (2, 4, 2) 0 yỹ
TSGLEE25I 25i EX (2, 5, 2) 0 yỹ
TSGLEE35 35 EX (3, 5, 2) 0 yỹ
TSGLEEEXRK2A exrk2a EX (2, 6, 2) 0.25 yε
TSGLEERK32G1 rk32g1 EX (3, 8, 2) 0 yε
TSGLEERK285EX rk285ex EX (2, 9, 2) 0.25 yε

2.5.5 Using fully implicit methods

To use a fully implicit method like TSTHETA or TSGL, either provide the Jacobian of F () (and G() if G()
is provided) or use a DM that provides a coloring so the Jacobian can be computed efficiently via finite
differences.

2.5. TS: Scalable ODE and DAE Solvers 123

PETSc Users Manual, Release 3.14.2

2.5.6 Using the Explicit Runge-Kutta timestepper with variable
timesteps

The explicit Euler and Runge-Kutta methods require the ODE be in the form

u̇ = G(u, t).

The user can either call TSSetRHSFunction() and/or they can call TSSetIFunction() (so long as
the function provided to TSSetIFunction() is equivalent to u̇ + F̃ (t, u)) but the Jacobians need not be
provided.5

The Explicit Runge-Kutta timestepper with variable timesteps is an implementation of the standard Runge-
Kutta with an embedded method. The error in each timestep is calculated using the solutions from the
Runge-Kutta method and its embedded method (the 2-norm of the difference is used). The default method
is the 3rd-order Bogacki-Shampine method with a 2nd-order embedded method (TSRK3BS). Other available
methods are the 5th-order Fehlberg RK scheme with a 4th-order embedded method (TSRK5F), the 5th-
order Dormand-Prince RK scheme with a 4th-order embedded method (TSRK5DP), the 5th-order Bogacki-
Shampine RK scheme with a 4th-order embedded method (TSRK5BS, and the 6th-, 7th, and 8th-order robust
Verner RK schemes with a 5th-, 6th, and 7th-order embedded method, respectively (TSRK6VR, TSRK7VR,
TSRK8VR). Variable timesteps cannot be used with RK schemes that do not have an embedded method
(TSRK1FE - 1st-order, 1-stage forward Euler, TSRK2A - 2nd-order, 2-stage RK scheme, TSRK3 - 3rd-order,
3-stage RK scheme, TSRK4 - 4-th order, 4-stage RK scheme).

2.5.7 Special Cases

• u̇ = Au. First compute the matrix A then call

TSSetProblemType(ts,TS_LINEAR);
TSSetRHSFunction(ts,NULL,TSComputeRHSFunctionLinear,NULL);
TSSetRHSJacobian(ts,A,A,TSComputeRHSJacobianConstant,NULL);

or

TSSetProblemType(ts,TS_LINEAR);
TSSetIFunction(ts,NULL,TSComputeIFunctionLinear,NULL);
TSSetIJacobian(ts,A,A,TSComputeIJacobianConstant,NULL);

• u̇ = A(t)u. Use

TSSetProblemType(ts,TS_LINEAR);
TSSetRHSFunction(ts,NULL,TSComputeRHSFunctionLinear,NULL);
TSSetRHSJacobian(ts,A,A,YourComputeRHSJacobian, &appctx);

where YourComputeRHSJacobian() is a function you provide that computes A as a function of
time. Or use

TSSetProblemType(ts,TS_LINEAR);
TSSetIFunction(ts,NULL,TSComputeIFunctionLinear,NULL);
TSSetIJacobian(ts,A,A,YourComputeIJacobian, &appctx);

5 PETSc will automatically translate the function provided to the appropriate form.

124 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

2.5.8 Monitoring and visualizing solutions

• -ts_monitor - prints the time and timestep at each iteration.

• -ts_adapt_monitor - prints information about the timestep adaption calculation at each iteration.

• -ts_monitor_lg_timestep - plots the size of each timestep, TSMonitorLGTimeStep().

• -ts_monitor_lg_solution - for ODEs with only a few components (not arising from the dis-
cretization of a PDE) plots the solution as a function of time, TSMonitorLGSolution().

• -ts_monitor_lg_error - for ODEs with only a few components plots the error as a function of
time, only if TSSetSolutionFunction() is provided, TSMonitorLGError().

• -ts_monitor_draw_solution - plots the solution at each iteration, TSMonitorDrawSolu-
tion().

• -ts_monitor_draw_error - plots the error at each iteration only if TSSetSolutionFunction()
is provided, TSMonitorDrawSolution().

• -ts_monitor_solution binary[:filename] - saves the solution at each iteration to a binary
file, TSMonitorSolution().

• -ts_monitor_solution_vtk <filename-%03D.vts> - saves the solution at each iteration to a
file in vtk format, TSMonitorSolutionVTK().

2.5.9 Error control via variable time-stepping

Most of the time stepping methods avaialable in PETSc have an error estimation and error control mech-
anism. This mechanism is implemented by changing the step size in order to maintain user specified abso-
lute and relative tolerances. The PETSc object responsible with error control is TSAdapt. The available
TSAdapt types are listed in the following table.

Table 2.15: TSAdapt: available adaptors
ID NameNotes
TSADAPT-
NONE

none no adaptivity

TSADAPT-
BASIC

ba-
sic

the default adaptor

TSADAPT-
GLEE

glee extension of the basic adaptor to treat TolA and TolR as separate criteria. It can also
control global erorrs if the integrator (e.g., TSGLEE) provides this information

When using TSADAPTBASIC (the default), the user typically provides a desired absolute TolA or a relative
TolR error tolerance by invoking TSSetTolerances() or at the command line with options -ts_atol
and -ts_rtol. The error estimate is based on the local truncation error, so for every step the algorithm
verifies that the estimated local truncation error satisfies the tolerances provided by the user and computes
a new step size to be taken. For multistage methods, the local truncation is obtained by comparing the
solution y to a lower order p̂ = p− 1 approximation, ŷ, where p is the order of the method and p̂ the order
of ŷ.

The adaptive controller at step n computes a tolerance level

Toln(i) = TolA(i) +max(yn(i), ŷn(i))TolR(i) ,

and forms the acceptable error level

wlten =
1

m

m∑
i=1

√
‖yn(i)− ŷn(i)‖

Tol(i)
,

2.5. TS: Scalable ODE and DAE Solvers 125

PETSc Users Manual, Release 3.14.2

where the errors are computed componentwise, m is the dimension of y and -ts_adapt_wnormtype is 2
(default). If -ts_adapt_wnormtype is infinity (max norm), then

wlten = max
1...m

‖yn(i)− ŷn(i)‖
Tol(i)

.

The error tolerances are satisfied when wlte ≤ 1.0.

The next step size is based on this error estimate, and determined by

∆tnew(t) = ∆told min(αmax,max(αmin, β(1/wlte)
1

p̂+1)) ,

where αmin =-ts_adapt_clip[0] and αmax=-ts_adapt_clip[1] keep the change in ∆t to within a
certain factor, and β < 1 is chosen through -ts_adapt_safety so that there is some margin to which the
tolerances are satisfied and so that the probability of rejection is decreased.

This adaptive controller works in the following way. After completing step k, if wltek+1 ≤ 1.0, then the step
is accepted and the next step is modified according to ([eq:hnew]); otherwise, the step is rejected and retaken
with the step length computed in ([eq:hnew]).

TSADAPTGLEE is an extension of the basic adaptor to treat TolA and TolR as separate criteria. it can also
control global errors if the integrator (e.g., TSGLEE) provides this information.

2.5.10 Handling of discontinuities

For problems that involve discontinuous right hand sides, one can set an “event” function g(t, u) for PETSc
to detect and locate the times of discontinuities (zeros of g(t, u)). Events can be defined through the event
monitoring routine

TSSetEventHandler(TS ts,PetscInt nevents,PetscInt *direction,PetscBool *terminate,
↪→PetscErrorCode (*eventhandler)(TS,PetscReal,Vec,PetscScalar*,void* eventP),
↪→PetscErrorCode (*postevent)(TS,PetscInt,PetscInt[],PetscReal,Vec,PetscBool,void*␣
↪→eventP),void *eventP);

Here, nevents denotes the number of events, direction sets the type of zero crossing to be detected for
an event (+1 for positive zero-crossing, -1 for negative zero-crossing, and 0 for both), terminate conveys
whether the time-stepping should continue or halt when an event is located, eventmonitor is a user-
defined routine that specifies the event description, postevent is an optional user-defined routine to take
specific actions following an event.

The arguments to eventhandler() are the timestep context, current time, input state u, array of event
function value, and the (optional) user-provided context eventP.

The arguments to postevent() routine are the timestep context, number of events occured, indices of
events occured, current time, input state u, a boolean flag indicating forward solve (1) or adjoint solve (0),
and the (optional) user-provided context eventP.

The event monitoring functionality is only available with PETSc’s implicit time-stepping solvers TSTHETA,
TSARKIMEX, and TSROSW.

126 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

2.5.11 Using TChem from PETSc

TChem6 is a package originally developed at Sandia National Laboratory that can read in CHEMKIN7

data files and compute the right hand side function and its Jacobian for a reaction ODE system. To utilize
PETSc’s ODE solvers for these systems, first install PETSc with the additional ./configure option --
download-tchem. We currently provide two examples of its use; one for single cell reaction and one for
an “artificial” one dimensional problem with periodic boundary conditions and diffusion of all species. The
self-explanatory examples are the The TS tutorial extchem and The TS tutorial extchemfield.

2.5.12 Using Sundials from PETSc

Sundials is a parallel ODE solver developed by Hindmarsh et al. at LLNL. The TS library provides an
interface to use the CVODE component of Sundials directly from PETSc. (To configure PETSc to use
Sundials, see the installation guide, docs/installation/index.htm.)

To use the Sundials integrators, call

TSSetType(TS ts,TSType TSSUNDIALS);

or use the command line option -ts_type sundials.

Sundials’ CVODE solver comes with two main integrator families, Adams and BDF (backward differentiation
formula). One can select these with

TSSundialsSetType(TS ts,TSSundialsLmmType [SUNDIALS_ADAMS,SUNDIALS_BDF]);

or the command line option -ts_sundials_type <adams,bdf>. BDF is the default.

Sundials does not use the SNES library within PETSc for its nonlinear solvers, so one cannot change the
nonlinear solver options via SNES. Rather, Sundials uses the preconditioners within the PC package of
PETSc, which can be accessed via

TSSundialsGetPC(TS ts,PC *pc);

The user can then directly set preconditioner options; alternatively, the usual runtime options can be em-
ployed via -pc_xxx.

Finally, one can set the Sundials tolerances via

TSSundialsSetTolerance(TS ts,double abs,double rel);

where abs denotes the absolute tolerance and rel the relative tolerance.

Other PETSc-Sundials options include

TSSundialsSetGramSchmidtType(TS ts,TSSundialsGramSchmidtType type);

where type is either SUNDIALS_MODIFIED_GS or SUNDIALS_UNMODIFIED_GS. This may be set via the
options data base with -ts_sundials_gramschmidt_type <modifed,unmodified>.

The routine

TSSundialsSetMaxl(TS ts,PetscInt restart);

sets the number of vectors in the Krylov subpspace used by GMRES. This may be set in the options database
with -ts_sundials_maxl maxl.

6 bitbucket.org/jedbrown/tchem
7 en.wikipedia.org/wiki/CHEMKIN

2.5. TS: Scalable ODE and DAE Solvers 127

https://www.mcs.anl.gov/petsc/petsc-current/src/ts/tutorials/extchem.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/ts/tutorials/extchemfield.c.html
https://bitbucket.org/jedbrown/tchem
https://en.wikipedia.org/wiki/CHEMKIN

PETSc Users Manual, Release 3.14.2

2.6 Performing sensitivity analysis

The TS library provides a framework based on discrete adjoint models for sensitivity analysis for ODEs and
DAEs. The ODE/DAE solution process (henceforth called the forward run) can be obtained by using either
explicit or implicit solvers in TS, depending on the problem properties. Currently supported method types
are TSRK (Runge-Kutta) explicit methods and TSTHETA implicit methods, which include TSBEULER and
TSCN.

2.6.1 Using the discrete adjoint methods

Consider the ODE/DAE

F (t, y, ẏ, p) = 0, y(t0) = y0(p) t0 ≤ t ≤ tF

and the cost function(s)

Ψi(y0, p) = Φi(yF , p) +

∫ tF

t0

ri(y(t), p, t)dt i = 1, ..., ncost.

The TSAdjoint routines of PETSc provide

∂Ψi

∂y0
= λi

and

∂Ψi

∂p
= µi + λi(

∂y0
∂p

).

To perform the discrete adjoint sensitivity analysis one first sets up the TS object for a regular forward run
but with one extra function call

TSSetSaveTrajectory(TS ts),

then calls TSSolve() in the usual manner.

One must create two arrays of ncost vectors λ andµ (if there are no parameters p then one can use NULL for
the µ array.) The λ vectors are the same dimension and parallel layout as the solution vector for the ODE,
the mu vectors are of dimension p; when p is small usually all its elements are on the first MPI process,
while the vectors have no entries on the other processes. λi and mui should be initialized with the values
dΦi/dy|t=tF and dΦi/dp|t=tF respectively. Then one calls

TSSetCostGradients(TS ts,PetscInt numcost, Vec *lambda,Vec *mu);

If F () is a function of p one needs to also provide the Jacobian −Fp with

TSSetRHSJacobianP(TS ts,Mat Amat,PetscErrorCode (*fp)(TS,PetscReal,Vec,Mat,void*),
↪→void *ctx)

The arguments for the function fp() are the timestep context, current time, y, and the (optional) user-
provided context.

If there is an integral term in the cost function, i.e. r is nonzero, it can be transformed into another ODE
that is augmented to the original ODE. To evaluate the integral, one needs to create a child TS objective by
calling

128 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

TSCreateQuadratureTS(TS ts,PetscBool fwd,TS *quadts);

and provide the ODE RHS function (which evaluates the integrand r) with

TSSetRHSFunction(TS quadts,Vec R,PetscErrorCode (*rf)(TS,PetscReal,Vec,Vec,void*),
↪→void *ctx)

Similar to the settings for the original ODE, Jacobians of the integrand can be provided with

TSSetRHSJacobian(TS quadts,Vec DRDU,Vec DRDU,PetscErrorCode (*drdyf)(TS,PetscReal,Vec,
↪→Vec*,void*),void *ctx)
TSSetRHSJacobianP(TS quadts,Vec DRDU,Vec DRDU,PetscErrorCode (*drdyp)(TS,PetscReal,
↪→Vec,Vec*,void*),void *ctx)

where drdyf = dr/dy, drdpf = dr/dp. Since the integral term is additive to the cost function, its gradient
information will be included in λ and µ.

Lastly, one starts the backward run by calling

TSAdjointSolve(TS ts).

One can obtain the value of the integral term by calling

TSGetCostIntegral(TS ts,Vec *q).

or accessing directly the solution vector used by quadts.

The second argument of TSCreateQuadratureTS() allows one to choose if the integral term is evalu-
ated in the forward run (inside TSSolve()) or in the backward run (inside TSAdjointSolve()) when
TSSetCostGradients() and TSSetCostIntegrand() are called before TSSolve(). Note that this
also allows for evaluating the integral without having to use the adjoint solvers.

To provide a better understanding of the use of the adjoint solvers, we introduce a simple example, corre-
sponding to TS Power Grid Tutorial ex3adj. The problem is to study dynamic security of power system when
there are credible contingencies such as short-circuits or loss of generators, transmission lines, or loads. The
dynamic security constraints are incorporated as equality constraints in the form of discretized differential
equations and inequality constraints for bounds on the trajectory. The governing ODE system is

ϕ′ = ωB(ω − ωS)

2H/ωS ω′ = pm − pmaxsin(ϕ)−D(ω − ωS), t0 ≤ t ≤ tF ,

where ϕ is the phase angle and ω is the frequency.

The initial conditions at time t0 are

ϕ(t0) = arcsin (pm/pmax) ,

w(t0) = 1.

pmax is a positive number when the system operates normally. At an event such as fault incidence/removal,
pmax will change to 0 temporarily and back to the original value after the fault is fixed. The objective is
to maximize pm subject to the above ODE constraints and ϕ < ϕS during all times. To accommodate the
inequality constraint, we want to compute the sensitivity of the cost function

Ψ(pm, ϕ) = −pm + c

∫ tF

t0

(max(0, ϕ− ϕS))
2
dt

with respect to the parameter pm. numcost is 1 since it is a scalar function.

2.6. Performing sensitivity analysis 129

https://www.mcs.anl.gov/petsc/petsc-current/src/ts/tutorials/power_grid/ex3adj.c.html

PETSc Users Manual, Release 3.14.2

For ODE solution, PETSc requires user-provided functions to evaluate the system F (t, y, ẏ, p) (set by TS-
SetIFunction()) and its corresponding Jacobian Fy+σFẏ (set by TSSetIJacobian()). Note that the
solution state y is [ϕ ω]T here. For sensitivity analysis, we need to provide a routine to compute fp = [0 1]T us-
ing TSASetRHSJacobianP(), and three routines corresponding to the integrand r = c (max(0, ϕ− ϕS))

2,
rp = [0 0]T and ry = [2c (max(0, ϕ− ϕS)) 0]T using TSSetCostIntegrand().

In the adjoint run, λ and µ are initialized as [0 0]T and [−1] at the final time tF . After TSAdjointSolve(),
the sensitivity of the cost function w.r.t. initial conditions is given by the sensitivity variable λ (at time t0)
directly. And the sensitivity of the cost function w.r.t. the parameter pm can be computed (by users) as

dΨ
dpm

= µ(t0) + λ(t0)
d [ϕ(t0) ω(t0)]T

dpm
.

For explicit methods where one does not need to provide the Jacobian Fu for the forward solve one still does
need it for the backward solve and thus must call

TSSetRHSJacobian(TS ts,Mat Amat, Mat Pmat,PetscErrorCode (*f)(TS,PetscReal,Vec,Mat,
↪→Mat,void*),void *fP);

Examples include:

• a discrete adjoint sensitivity using explicit time stepping methods TS Tutorial ex16adj,

• a discrete adjoint sensitivity using implicit time stepping methods TS Tutorial ex20adj,

• an optimization using the discrete adjoint models of ERK TS Tutorial ex16opt_ic and TS Tutorial
ex16opt_p <https://www.mcs.anl.gov/petsc/petsc-current/src/ts/tutorials/ex16opt_p.c.html>‘__,

• an optimization using the discrete adjoint models of Theta methods for stiff DAEs TS Tutorial
ex20opt_ic and TS Tutorial ex20opt_p,

• an ODE-constrained optimization using the discrete adjoint models of Theta methods for cost function
with an integral term TS Power Grid Tutorial ex3opt,

• a discrete adjoint sensitivity using TSCN (Crank-Nicolson) methods for DAEs with discontinuities TS
Power Grid Stability Tutorial ex9busadj.c,

• a DAE-constrained optimization using the discrete adjoint models of TSCN (Crank-Nicolson) methods
for cost function with an integral term TS Power Grid Tutorial ex9busopt.c,

• a discrete adjoint sensitivity using TSCN methods for a PDE problem TS Advection-Diffusion-Reaction
Tutorial ex5adj.

2.6.2 Checkpointing

The discrete adjoint model requires the states (and stage values in the context of multistage timestepping
methods) to evaluate the Jacobian matrices during the adjoint (backward) run. By default, PETSc stores
the whole trajectory to disk as binary files, each of which contains the information for a single time step
including state, time, and stage values (optional). One can also make PETSc store the trajectory to memory
with the option -ts_trajectory_type memory. However, there might not be sufficient memory capacity
especially for large-scale problems and long-time integration.

A so-called checkpointing scheme is needed to solve this problem. The scheme stores checkpoints at selective
time steps and recomputes the missing information. The revolve library is used by PETSc TSTrajec-
tory to generate an optimal checkpointing schedule that minimizes the recomputations given a limited
number of available checkpoints. One can specify the number of available checkpoints with the option
-ts_trajectory_max_cps_ram [maximum number of checkpoints in RAM]. Note that one
checkpoint corresponds to one time step.

130 Chapter 2. Programming with PETSc

https://www.mcs.anl.gov/petsc/petsc-current/src/ts/tutorials/ex16adj.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/ts/tutorials/ex20adj.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/ts/tutorials/ex16opt_ic.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/ts/tutorials/ex16opt_p.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/ts/tutorials/ex20opt_ic.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/ts/tutorials/ex20opt_ic.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/ts/tutorials/ex20opt_p.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/ts/tutorials/power_grid/ex3opt.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/ts/tutorials/power_grid/stability_9bus/ex9busadj.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/ts/tutorials/power_grid/stability_9bus/ex9busadj.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/ts/tutorials/power_grid/stability_9bus/ex9busopt.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/ts/tutorials/advection-diffusion-reaction/ex5adj.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/ts/tutorials/advection-diffusion-reaction/ex5adj.c.html

PETSc Users Manual, Release 3.14.2

The revolve library also provides an optimal multistage checkpointing scheme that uses both
RAM and disk for storage. This scheme is automatically chosen if one uses both the option -
ts_trajectory_max_cps_ram [maximum number of checkpoints in RAM] and the option
-ts_trajectory_max_cps_disk [maximum number of checkpoints on disk].

Some other useful options are listed below.

• -ts_trajectory_view prints the total number of recomputations,

• -ts_monitor and -ts_adjoint_monitor allow users to monitor the progress of the adjoint work
flow,

• -ts_trajectory_type visualization may be used to save the whole trajectory for vi-
sualization. It stores the solution and the time, but no stage values. The binary files
generated can be read into MATLAB via the script ${PETSC_DIR}/share/petsc/matlab/
PetscReadBinaryTrajectory.m.

2.7 Solving Steady-State Problems with Pseudo-
Timestepping

Simple Example: TS provides a general code for performing pseudo timestepping with a variable timestep
at each physical node point. For example, instead of directly attacking the steady-state problem

G(u) = 0,

we can use pseudo-transient continuation by solving

ut = G(u).

Using time differencing

ut
.
=

un+1 − un

dtn

with the backward Euler method, we obtain nonlinear equations at a series of pseudo-timesteps
1

dtn
B(un+1 − un) = G(un+1).

For this problem the user must provide G(u), the time steps dtn and the left-hand-side matrix B (or
optionally, if the timestep is position independent and B is the identity matrix, a scalar timestep), as well
as optionally the Jacobian of G(u).

More generally, this can be applied to implicit ODE and DAE for which the transient form is

F (u, u̇) = 0.

For solving steady-state problems with pseudo-timestepping one proceeds as follows.

• Provide the function G(u) with the routine

TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void␣
↪→*fP);

The arguments to the function f() are the timestep context, the current time, the input for the
function, the output for the function and the (optional) user-provided context variable fP.

• Provide the (approximate) Jacobian matrix of G(u) and a function to compute it at each Newton
iteration. This is done with the command

2.7. Solving Steady-State Problems with Pseudo-Timestepping 131

PETSc Users Manual, Release 3.14.2

TSSetRHSJacobian(TS ts,Mat Amat, Mat Pmat,PetscErrorCode (*f)(TS,PetscReal,Vec,
↪→Mat,Mat,void*),void *fP);

The arguments for the function f() are the timestep context, the current time, the location where the
Jacobian is to be computed, the (approximate) Jacobian matrix, an alternative approximate Jacobian
matrix used to construct the preconditioner, and the optional user-provided context, passed in as fP.
The user must provide the Jacobian as a matrix; thus, if using a matrix-free approach, one must create
a MATSHELL matrix.

In addition, the user must provide a routine that computes the pseudo-timestep. This is slightly different
depending on if one is using a constant timestep over the entire grid, or it varies with location.

• For location-independent pseudo-timestepping, one uses the routine

TSPseudoSetTimeStep(TS ts,PetscInt(*dt)(TS,PetscReal*,void*),void* dtctx);

The function dt is a user-provided function that computes the next pseudo-timestep. As a default one
can use TSPseudoTimeStepDefault(TS,PetscReal*,void*) for dt. This routine updates the
pseudo-timestep with one of two strategies: the default

dtn = dtincrement ∗ dtn−1 ∗ ||F (un−1)||
||F (un)||

or, the alternative,

dtn = dtincrement ∗ dt0 ∗
||F (u0)||
||F (un)||

which can be set with the call

TSPseudoIncrementDtFromInitialDt(TS ts);

or the option -ts_pseudo_increment_dt_from_initial_dt. The value dtincrement is by default
1.1, but can be reset with the call

TSPseudoSetTimeStepIncrement(TS ts,PetscReal inc);

or the option -ts_pseudo_increment <inc>.

• For location-dependent pseudo-timestepping, the interface function has not yet been created.

2.8 High Level Support for Multigrid with KSPSetDM() and
SNESSetDM()

This chapter needs to be written. For now, see the manual pages (and linked examples) for KSPSetDM()
and SNESSetDM().

Smoothing on each level of the hierarchy is handled by a KSP held by the PCMG, or in the nonlinear case,
a SNES held by SNESFAS. The DM for each level is associated with the smoother using KSPSetDM() and
SNESSetDM().

The linear operators which carry out interpolation and restriction (usually of type MATMAIJ) are held by the
PCMG/SNESFAS, and generated automatically by the DM using information about the discretization. Below
we briefly discuss the different operations:

Interpolation transfers a function from the coarse space to the fine space. We would like this process to
be accurate for the functions resolved by the coarse grid, in particular the approximate solution computed

132 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

there. By default, we create these matrices using local interpolation of the fine grid dual basis functions in the
coarse basis. However, an adaptive procedure can optimize the coefficients of the interpolator to reproduce
pairs of coarse/fine functions which should approximate the lowest modes of the generalized eigenproblem

Ax = λMx

where A is the system matrix and M is the smoother. Note that for defect-correction MG, the interpolated
solution from the coarse space need not be as accurate as the fine solution, for the same reason that updates
in iterative refinement can be less accurate. However, in FAS or in the final interpolation step for each level
of Full Multigrid, we must have interpolation as accurate as the fine solution since we are moving the entire
solution itself.

Injection should accurately transfer the fine solution to the coarse grid. Accuracy here means that the
action of a coarse dual function on either should produce approximately the same result. In the structured
grid case, this means that we just use the same values on coarse points. This can result in aliasing.

Restriction is intended to transfer the fine residual to the coarse space. Here we use averaging (often the
transpose of the interpolation operation) to damp out the fine space contributions. Thus, it is less accurate
than injection, but avoids aliasing of the high modes.

2.8.1 Adaptive Interpolation

For a multigrid cycle, the interpolator P is intended to accurately reproduce “smooth” functions from the
coarse space in the fine space, keeping the energy of the interpolant about the same. For the Laplacian on
a structured mesh, it is easy to determine what these low-frequency functions are. They are the Fourier
modes. However an arbitrary operator A will have different coarse modes that we want to resolve accurately
on the fine grid, so that our coarse solve produces a good guess for the fine problem. How do we make sure
that our interpolator P can do this?

We first must decide what we mean by accurate interpolation of some functions. Suppose we know the
continuum function f that we care about, and we are only interested in a finite element description of
discrete functions. Then the coarse function representing f is given by

fC =
∑
i

fC
i ϕC

i ,

and similarly the fine grid form is

fF =
∑
i

fF
i ϕF

i .

Now we would like the interpolant of the coarse representer to the fine grid to be as close as possible to the
fine representer in a least squares sense, meaning we want to solve the minimization problem

min
P
‖fF − PfC‖2

Now we can express P as a matrix by looking at the matrix elements Pij = ϕF
i PϕC

j . Then we have

ϕF
i f

F − ϕF
i PfC

=fF
i −

∑
j

Pijf
C
j

so that our discrete optimization problem is

min
Pij

‖fF
i −

∑
j

Pijf
C
j ‖2

2.8. High Level Support for Multigrid with KSPSetDM() and SNESSetDM() 133

PETSc Users Manual, Release 3.14.2

and we will treat each row of the interpolator as a separate optimization problem. We could allow an arbitrary
sparsity pattern, or try to determine adaptively, as is done in sparse approximate inverse preconditioning.
However, we know the supports of the basis functions in finite elements, and thus the naive sparsity pattern
from local interpolation can be used.

We note here that the BAMG framework of Brannick, et. al. [BBKL11] does not use fine and coarse functions
spaces, but rather a fine point/coarse point division which we will not employ here. Our general PETSc
routine should work for both since the input would be the checking set (fine basis coefficients or fine space
points) and the approximation set (coarse basis coefficients in the support or coarse points in the sparsity
pattern).

We can easily solve the above problem using QR factorization. However, there are many smooth functions
from the coarse space that we want interpolated accurately, and a single f would not constrain the values
Pij well. Therefore, we will use several functions {fk} in our minimization,

min
Pij

∑
k

wk‖fF,k
i −

∑
j

Pijf
C,k
j ‖2

=min
Pij

∑
k

‖
√
wkf

F,k
i −

√
wk

∑
j

Pijf
C,k
j ‖2

=min
Pij

‖W 1/2fFi −W 1/2fCpi‖2

where

W =

w0

. . .
wK



fFi =

 fF,0
i
...

fF,K
i



fC =

 fC,0
0 · · · fC,0

n
...

fC,K
0 · · · fC,K

n



pi =

Pi0

...
Pin


or alternatively

kk = wk

[fF
i]k = fF,k

i

[fC]kj = fC,k
j

[pi]j = Pij

We thus have a standard least-squares problem

min
Pij

‖b−Ax‖2

where

A = W 1/2fC

b = W 1/2fF
i

x = pi

134 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

which can be solved using LAPACK.

We will typically perform this optimization on a multigrid level l when the change in eigenvalue from level
l + 1 is relatively large, meaning

|λl − λl+1|
|λl|

.

This indicates that the generalized eigenvector associated with that eigenvalue was not adequately repre-
sented by P l

l+1, and the interpolator should be recomputed.

2.9 DMPlex: Unstructured Grids in PETSc

This chapter introduces the DMPLEX subclass of DM, which allows the user to handle unstructured grids using
the generic DM interface for hierarchy and multi-physics. DMPlex was created to remedy a huge problem in
all current PDE simulation codes, namely that the discretization was so closely tied to the data layout and
solver that switching discretizations in the same code was not possible. Not only does this preclude the kind
of comparison that is necessary for scientific investigation, but it makes library (as opposed to monolithic
application) development impossible.

2.9.1 Representing Unstructured Grids

The main advantage of DMPlex in representing topology is that it treats all the different pieces of a mesh,
e.g. cells, faces, edges, and vertices, in exactly the same way. This allows the interface to be very small and
simple, while remaining flexible and general. This also allows “dimension independent programming”, which
means that the same algorithm can be used unchanged for meshes of different shapes and dimensions.

All pieces of the mesh are treated as points, which are identified by PetscInts. A mesh is built by relating
points to other points, in particular specifying a “covering” relation among the points. For example, an edge
is defined by being covered by two vertices, and a triangle can be defined by being covered by three edges (or
even by three vertices). In fact, this structure has been known for a long time. It is a Hasse Diagram Hasse
Diagram, which is a Directed Acyclic Graph (DAG) representing a cell complex using the covering relation.
The graph edges represent the relation, which also encodes a partially ordered set (poset).

For example, we can encode the doublet mesh as in Fig. 2.5,

Fig. 2.5: A 2D doublet mesh, two triangles sharing an edge.

which can also be represented as the DAG in Fig. 2.6.

2.9. DMPlex: Unstructured Grids in PETSc 135

http://en.wikipedia.org/wiki/Hasse_diagram
http://en.wikipedia.org/wiki/Hasse_diagram

PETSc Users Manual, Release 3.14.2

Fig. 2.6: The Hasse diagram for our 2D doublet mesh, expressed as a DAG.

To use the PETSc API, we first consecutively number the mesh pieces. The PETSc convention in 3 dimen-
sions is to number first cells, then vertices, then faces, and then edges. In 2 dimensions the convention is to
number faces, vertices, and then edges. The user is free to violate these conventions. In terms of the labels
in Fig. 2.5, these numberings are

f0 7→ 0, f1 7→ 1, v0 7→ 2, v1 7→ 3, v2 7→ 4, v3 7→ 5, e0 7→ 6, e1 7→ 7, e2 7→ 8, e3 7→ 9, e4 7→ 10

First, we declare the set of points present in a mesh,

DMPlexSetChart(dm, 0, 11);

Note that a chart here corresponds to a semi-closed interval (e.g [0, 11) = {0, 1, . . . , 10}) specifying the range
of indices we’d like to use to define points on the current rank. We then define the covering relation, which
we call the cone, which are also the in-edges in the DAG. In order to preallocate correctly, we first setup
sizes,

DMPlexSetConeSize(dm, 0, 3);
DMPlexSetConeSize(dm, 1, 3);
DMPlexSetConeSize(dm, 6, 2);
DMPlexSetConeSize(dm, 7, 2);
DMPlexSetConeSize(dm, 8, 2);
DMPlexSetConeSize(dm, 9, 2);
DMPlexSetConeSize(dm, 10, 2);
DMSetUp(dm);

and then point values,

DMPlexSetCone(dm, 0, [6, 7, 8]);
DMPlexSetCone(dm, 1, [7, 9, 10]);
DMPlexSetCone(dm, 6, [2, 3]);
DMPlexSetCone(dm, 7, [3, 4]);
DMPlexSetCone(dm, 8, [4, 2]);
DMPlexSetCone(dm, 9, [4, 5]);
DMPlexSetCone(dm, 10, [5, 3]);

There is also an API for the dual relation, using DMPlexSetSupportSize() and DMPlexSetSupport(),
but this can be calculated automatically by calling

136 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

DMPlexSymmetrize(dm);

In order to support efficient queries, we also want to construct fast search structures and indices for the
different types of points, which is done using

DMPlexStratify(dm);

2.9.2 Data on Unstructured Grids

The strongest links between solvers and discretizations are

• the layout of data over the mesh,

• problem partitioning, and

• ordering of unknowns.

To enable modularity, we encode the operations above in simple data structures that can be understood by
the linear algebra engine in PETSc without any reference to the mesh (topology) or discretization (analysis).

Data Layout

Data is associated with a mesh using the PetscSection object. A PetscSection can be thought of as
a generalization of PetscLayout, in the same way that a fiber bundle is a generalization of the normal
Euclidean basis used in linear algebra. With PetscLayout, we associate a unit vector (ei) with every point
in the space, and just divide up points between processes. Using PetscSection, we can associate a set of
dofs, a small space {ek}, with every point, and though our points must be contiguous like PetscLayout,
they can be in any range [pStart,pEnd).

The sequence for setting up any PetscSection is the following:

1. Specify the chart,

2. Specify the number of dofs per point, and

3. Set up the PetscSection.

For example, using the mesh from Fig. 2.5, we can lay out data for a continuous Galerkin P3 finite element
method,

PetscInt pStart, pEnd, cStart, cEnd, c, vStart, vEnd, v, eStart, eEnd, e;

DMPlexGetChart(dm, &pStart, &pEnd);
DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd); /* cells */
DMPlexGetHeightStratum(dm, 1, &eStart, &eEnd); /* edges */
DMPlexGetHeightStratum(dm, 2, &vStart, &vEnd); /* vertices, equivalent to␣
↪→DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd); */
PetscSectionSetChart(s, pStart, pEnd);
for(c = cStart; c < cEnd; ++c)

PetscSectionSetDof(s, c, 1);
for(v = vStart; v < vEnd; ++v)

PetscSectionSetDof(s, v, 1);
for(e = eStart; e < eEnd; ++e)

PetscSectionSetDof(s, e, 2);
PetscSectionSetUp(s);

2.9. DMPlex: Unstructured Grids in PETSc 137

PETSc Users Manual, Release 3.14.2

DMPlexGetHeightStratum() returns all the points of the requested height in the DAG. Since this problem
is in two dimensions the edges are at height 1 and the vertices at height 2 (the cells are always at height
0). One can also use DMPlexGetDepthStratum() to use the depth in the DAG to select the points.
DMPlexGetDepth(,&depth) routines the depth of the DAG, hence DMPlexGetDepthStratum(dm,
depth-1-h,) returns the same values as DMPlexGetHeightStratum(dm,h,).

For P3 elements there is one degree of freedom at each vertex, 2 along each edge (resulting in a total of 4
degrees of freedom alone each edge including the vertices, thus being able to reproduce a cubic function)
and 1 degree of freedom within the cell (the bubble function which is zero along all edges).

Now a PETSc local vector can be created manually using this layout,

PetscSectionGetStorageSize(s, &n);
VecSetSizes(localVec, n, PETSC_DETERMINE);
VecSetFromOptions(localVec);

though it is usually easier to use the DM directly, which also provides global vectors,

DMSetLocalSection(dm, s);
DMGetLocalVector(dm, &localVec);
DMGetGlobalVector(dm, &globalVec);

Partitioning and Ordering

In exactly the same way as in MatPartitioning or with MatGetOrdering(), the results of a partition
using DMPlexPartition or reordering using DMPlexPermute are encoded in an IS. However, the graph
is not the adjacency graph of the problem Jacobian, but the mesh itself. Once the mesh is partitioned
and reordered, the data layout from a PetscSection can be used to automatically derive a problem
partitioning/ordering.

Influence of Variables on One Another

The Jacobian of a problem is intended to represent the influence of some variable on other variables in the
problem. Very often, this influence pattern is determined jointly by the computational mesh and discretiza-
tion. DMCreateMatrix must compute this pattern when it automatically creates the properly preallocated
Jacobian matrix. In DMDA the influence pattern, or what we will call variable adjacency, depends only on
the stencil since the topology is Cartesian and the discretization is implicitly finite difference. In DMPlex,
we allow the user to specify the adjacency topologically, while maintaining good defaults.

The pattern is controlled by two flags. The first flag, useCone, indicates whether variables couple first
to their boundary and then to neighboring entities, or the reverse. For example, in finite elements, the
variables couple to the set of neighboring cells containing the mesh point, and we set the flag to useCone
= PETSC_FALSE. By constrast, in finite volumes, cell variables first couple to the cell boundary, and then
to the neighbors, so we set the flag to useCone = PETSC_TRUE. The second flag, useClosure, indicates
whether we consider the transitive closure of the neighbor relation above, or just a single level. For example,
in finite elements, the entire boundary of any cell couples to the interior, and we set the flag to useClosure
= PETSC_TRUE. By contrast, in most finite volume methods, cells couple only across faces, and not through
vertices, so we set the flag to useClosure = PETSC_FALSE. However, the power of this method is its
flexibility. If we wanted a finite volume method that coupled all cells around a vertex, we could easily
prescribe that by changing to useClosure = PETSC_TRUE.

138 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

2.9.3 Evaluating Residuals

The evaluation of a residual or Jacobian, for most discretizations has the following general form:

• Traverse the mesh, picking out pieces (which in general overlap),

• Extract some values from the solution vector, associated with this piece,

• Calculate some values for the piece, and

• Insert these values into the residual vector

DMPlex separates these different concerns by passing sets of points, which are just PetscInts, from mesh
traversal routines to data extraction routines and back. In this way, the PetscSection which structures
the data inside a Vec does not need to know anything about the mesh inside a DMPlex.

The most common mesh traversal is the transitive closure of a point, which is exactly the transitive closure
of a point in the DAG using the covering relation. In other words, the transitive closure consists of all
points that cover the given point (generally a cell) plus all points that cover those points, etc. So in 2d the
transitive closure for a cell consists of edges and vertices while in 3d it consists of faces, edges, and vertices.
Note that this closure can be calculated orienting the arrows in either direction. For example, in a finite
element calculation, we calculate an integral over each element, and then sum up the contributions to the
basis function coefficients. The closure of the element can be expressed discretely as the transitive closure
of the element point in the mesh DAG, where each point also has an orientation. Then we can retrieve the
data using PetscSection methods,

PetscScalar *a;
PetscInt numPoints, *points = NULL, p;

VecGetArray(u,&a);
DMPlexGetTransitiveClosure(dm,cell,PETSC_TRUE,&numPoints,&points);
for (p = 0; p <= numPoints*2; p += 2) {

PetscInt dof, off, d;

PetscSectionGetDof(section, points[p], &dof);
PetscSectionGetOffset(section, points[p], &off);
for (d = 0; d <= dof; ++d) {

myfunc(a[off+d]);
}

}
DMPlexRestoreTransitiveClosure(dm, cell, PETSC_TRUE, &numPoints, &points);
VecRestoreArray(u, &a);

This operation is so common that we have built a convenience method around it which returns the values
in a contiguous array, correctly taking into account the orientations of various mesh points:

const PetscScalar *values;
PetscInt csize;

DMPlexVecGetClosure(dm, section, u, cell, &csize, &values);
/* Do integral in quadrature loop */
DMPlexVecRestoreClosure(dm, section, u, cell, &csize, &values);
DMPlexVecSetClosure(dm, section, residual, cell, &r, ADD_VALUES);

A simple example of this kind of calculation is in DMPlexComputeL2Diff_Plex() (source). Note that
there is no restriction on the type of cell or dimension of the mesh in the code above, so it will work
for polyhedral cells, hybrid meshes, and meshes of any dimension, without change. We can also reverse the
covering relation, so that the code works for finite volume methods where we want the data from neighboring
cells for each face:

2.9. DMPlex: Unstructured Grids in PETSc 139

https://www.mcs.anl.gov/petsc/petsc-current/src/dm/impls/plex/plexfem.c.html#DMComputeL2Diff_Plex

PETSc Users Manual, Release 3.14.2

PetscScalar *a;
PetscInt points[2*2], numPoints, p, dofA, offA, dofB, offB;

VecGetArray(u, &a);
DMPlexGetTransitiveClosure(dm, cell, PETSC_FALSE, &numPoints, &points);
assert(numPoints == 2);
PetscSectionGetDof(section, points[0*2], &dofA);
PetscSectionGetDof(section, points[1*2], &dofB);
assert(dofA == dofB);
PetscSectionGetOffset(section, points[0*2], &offA);
PetscSectionGetOffset(section, points[1*2], &offB);
myfunc(a[offA], a[offB]);
VecRestoreArray(u, &a);

This kind of calculation is used in TS Tutorial ex11.

2.9.4 Networks

Built on top of DMPlex, the DMNetwork subclass provides abstractions for representing general unstruc-
tured networks such as communication networks, power grid, computer networks, transportation networks,
electrical circuits, graphs, and others.

Application flow

The general flow of an application code using DMNetwork is as follows:

1. Create a network object

DMNetworkCreate(MPI_Comm comm, DM *dm);

2. Create components and register them with the network. A “component” is specific application data at
a vertex/edge of the network required for its residual evaluation. For example, components could be
resistor, inductor data for circuit applications, edge weights for graph problems, generator/transmission
line data for power grids. Components are registered by calling

DMNetworkRegisterComponent(DM dm, const char *name, size_t size, PetscInt␣
↪→*compkey);

Here, name is the component name, size is the size of component data type, and compkey is an
integer key that can be used for setting/getting the component at a vertex or an edge. DMNetwork
currently allows upto 16 components to be registered for a network.

3. A DMNetwork can consist of one or more physical subnetworks. When multiple physical subnetworks
are used one can (optionally) provide coupling information between subnetworks which consist only of
edges connecting the vertices of the physical subnetworks. The topological sizes of the network are set
by calling

DMNetworkSetSizes(DM dm, PetscInt Nsubnet, PetscInt nV[], PetscInt nE[], PetscInt␣
↪→NsubnetCouple, PetscInt nec[]);

Here, Nsubnet is the number of subnetworks, nV and nE is the number of vertices and edges for
each subnetwork, NsubnetCouple is the number of pairs of subnetworks that are coupled, and nec
is the number of edges coupling each subnetwork pair. DMNetwork assumes coupling between the
subnetworks through coupling edges. For a single network, set Nsubnet = 1, NsubnetCouple = 0,

140 Chapter 2. Programming with PETSc

https://www.mcs.anl.gov/petsc/petsc-current/src/ts/tutorials/ex11.c.html

PETSc Users Manual, Release 3.14.2

and nec = NULL. Note that the coupling between subnetworks is still an experimental feature and
under development.

4. The next step is to set up the connectivity for the network. This is done by specifying the connectivity
within each subnetwork (edgelist) and between subnetworks (edgelistCouple).

DMNetworkSetEdgeList(DM dm, PetscInt *edgelist[], PetscInt *edgelistCouple[]);

Each element of edgelist is an integer array of size 2*nE[i] containing the edge connectivity for
the i-th subnetwork. Each element in edgelistCouple has four entries - from subnetwork number
(net.id), from subnetwork vertex number (vertex.id), to subnetwork number (net.id), to subetwork
vertex number (vertex.id).

As an example, consider a network comprising of 2 subnetworks that are coupled. The topological
information for the network is as follows:
subnetwork 0: v0 — v1 — v2 — v3
subnetwork 1: v1 — v2 — v0
coupling between subnetworks: subnetwork 1: v2 — subnetwork 0: v0
The edgelist and edgelistCouple for this network are
edgelist[0] = {0,1,1,2,2,3}
edgelist[1] = {1,2,2,0}
edgelistCouple[0] = {1,2,0,0}.

5. The next step is to have DMNetwork to create a bare layout (graph) of the network by calling

DMNetworkLayoutSetUp(DM dm);

6. After completing the previous steps, the network graph is set up, but no physics is associated yet. This
is done by adding the components and setting the number of variables for the vertices and edges.

A component is added to a vertex/edge by calling

DMNetworkAddComponent(DM dm, PetscInt p, PetscInt compkey, void* compdata);

where p is the network vertex/edge point in the range obtained by either DMNetworkGetEdgeRange or
DMNetworkGetVertexRange, compkey is the component key returned when registering the component
(DMNetworkRegisterComponent), and compdata holds the data for the component. DMNetwork
supports setting multiple components (max. 36) at a vertex/edge.

DMNetwork currently assumes the component data to be stored in a contiguous chunk of memory. As
such, it does not do any packing/unpacking before/after the component data gets distributed. Any
such serialization (packing/unpacking) should be done by the application.

The number of variables at each vertex/edge are set by

DMNetworkSetNumVariables(DM dm, PetscInt p, PetscInt nvar);

or

DMNetworkAddNumVariables(DM dm, PetscInt p, PetscInt nvar);

Alternatively, the number of variables can be set for a component directly. This allows much finer
control, specifically for vertices/edges that have multiple components set on them.

2.9. DMPlex: Unstructured Grids in PETSc 141

PETSc Users Manual, Release 3.14.2

DMNetworkSetComponentNumVariables(DM dm, PetscInt p, PetscInt compnum, PetscInt␣
↪→nvar);

7. Set up network internal data structures.

DMSetUp(DM dm);

8. Distribute the network (also moves components attached with vertices/edges) to multiple processors.

DMNetworkDistribute(DM dm, const char partitioner[], PetscInt overlap, DM␣
↪→*distDM);

9. Associate the DM with a PETSc solver:

KSPSetDM(KSP ksp, DM dm) or SNESSetDM(SNES snes, DM dm) or TSSetDM(TS ts, DM dm).

Utility functions

DMNetwork provides several utility functions for operations on the network. The mostly commonly used
functions are: obtaining iterators for vertices/edges,

DMNetworkGetEdgeRange(DM dm, PetscInt *eStart, PetscInt *eEnd);

DMNetworkGetVertexRange(DM dm, PetscInt *vStart, PetscInt *vEnd);

DMNetworkGetSubnetworkInfo(DM dm, PetscInt netid, PetscInt *nv, PetscInt *ne, const␣
↪→PetscInt **vtx, const PetscInt **edge);

Checking the “ghost” status of a vertex,

DMNetworkIsGhostVertex(DM dm, PetscInt p, PetscBool *isghost);

and retrieving local/global indices of vertex/edge variables for inserting elements in vectors/matrices.

DMNetworkGetVariableOffset(DM dm, PetscInt p, PetscInt *offset);

DMNetworkGetVariableGlobalOffset(DM dm, PetscInt p, PetscInt *offsetg);

If the number of variables are set at the component level, then their local/global offsets can be retrieved via

DMNetworkGetComponentVariableOffset(DM dm, PetscInt p, PetscInt compnum, PetscInt␣
↪→*offset);

DMNetworkGetComponentVariableGlobalOffset(DM dm, PetscInt p, PetscInt compnum,␣
↪→PetscInt *offsetg);

In network applications, one frequently needs to find the supporting edges for a vertex or the connecting
vertices covering an edge. These can be obtained by the following two routines.

DMNetworkGetConnectedVertices(DM dm, PetscInt edge, const PetscInt *vertices[]);

DMNetworkGetSupportingEdges(DM dm, PetscInt vertex, PetscInt *nedges, const PetscInt␣
↪→*edges[]);

142 Chapter 2. Programming with PETSc

PETSc Users Manual, Release 3.14.2

Retrieving components

The components set at a vertex/edge can be accessed by

DMNetworkGetComponent(DM dm, PetscInt p, PetscInt compnum, PetscInt *compkey, void**␣
↪→component);

compkey is the key set by DMNetworkRegisterComponent. An example of accessing and retrieving the
components at vertices is:

PetscInt Start, End, numcomps,key,v,compnum;
void *component;

DMNetworkGetVertexRange(dm, &Start, &End);
for (v=Start; v < End; v++) {

DMNetworkGetNumComponents(dm,v, &numcomps);
for (compnum=0; compnum < numcomps;compnum++) {

DMNetworkGetComponent(dm,v,compnum, &key, &component);
compdata = (UserCompDataType)(component);

}
}

The above example does not explicitly make use the component key. It is used when different component
types are set at different vertices. In this case, the compkey is used to differentiate the component type.

2.9. DMPlex: Unstructured Grids in PETSc 143

PETSc Users Manual, Release 3.14.2

144 Chapter 2. Programming with PETSc

CHAPTER

THREE

ADDITIONAL INFORMATION

3.1 PETSc for Fortran Users

Most of the functionality of PETSc can be obtained by people who program purely in Fortran.

3.1.1 C vs. Fortran Interfaces

Only a few differences exist between the C and Fortran PETSc interfaces, are due to Fortran syntax dif-
ferences. All Fortran routines have the same names as the corresponding C versions, and PETSc command
line options are fully supported. The routine arguments follow the usual Fortran conventions; the user need
not worry about passing pointers or values. The calling sequences for the Fortran version are in most cases
identical to the C version, except for the error checking variable discussed in Error Checking and a few
routines listed in Routines with Different Fortran Interfaces.

Fortran Include Files

The Fortran include files for PETSc are located in the directory ${PETSC_DIR}/include/petsc/
finclude and should be used via statements such as the following:

#include <petsc/finclude/petscXXX.h>

for example,

#include <petsc/finclude/petscksp.h>

You must also use the appropriate Fortran module which is done with

use petscXXX

for example,

use petscksp

145

PETSc Users Manual, Release 3.14.2

Error Checking

In the Fortran version, each PETSc routine has as its final argument an integer error variable, in contrast
to the C convention of providing the error variable as the routine’s return value. The error code is set to
be nonzero if an error has been detected; otherwise, it is zero. For example, the Fortran and C variants of
KSPSolve() are given, respectively, below, where ierr denotes the error variable:

call KSPSolve(ksp,b,x,ierr) ! Fortran
ierr = KSPSolve(ksp,b,x); /* C */

Fortran programmers can check these error codes with CHKERRQ(ierr), which terminates all processes
when an error is encountered. Likewise, one can set error codes within Fortran programs by using
SETERRQ(comm,p,' ',ierr), which again terminates all processes upon detection of an error. Note
that complete error tracebacks with CHKERRQ() and SETERRQ(), as described in Simple PETSc Examples
for C routines, are not directly supported for Fortran routines; however, Fortran programmers can easily use
the error codes in writing their own tracebacks. For example, one could use code such as the following:

call KSPSolve(ksp,b,x,ierr)
if (ierr .ne. 0) then

print*, 'Error in routine ...'
return

end if

Calling Fortran Routines from C (and C Routines from Fortran)

Different machines have different methods of naming Fortran routines called from C (or C routines called
from Fortran). Most Fortran compilers change all the capital letters in Fortran routines to lowercase. On
some machines, the Fortran compiler appends an underscore to the end of each Fortran routine name; for
example, the Fortran routine Dabsc() would be called from C with dabsc_(). Other machines change all
the letters in Fortran routine names to capitals.

PETSc provides two macros (defined in C/C++) to help write portable code that mixes C/C++ and Fortran.
They are PETSC_HAVE_FORTRAN_UNDERSCORE and PETSC_HAVE_FORTRAN_CAPS , which are defined in
the file ${PETSC_DIR}/${PETSC_ARCH}/include/petscconf.h. The macros are used, for example,
as follows:

#if defined(PETSC_HAVE_FORTRAN_CAPS)
#define dabsc_ DMDABSC
#elif !defined(PETSC_HAVE_FORTRAN_UNDERSCORE)
#define dabsc_ dabsc
#endif
.....
dabsc_(&n,x,y); /* call the Fortran function */

Passing Null Pointers

In several PETSc C functions, one has the option of passing a NULL (0) argument (for example, the fifth
argument of MatCreateSeqAIJ()). From Fortran, users must pass PETSC_NULL_XXX to indicate a null
argument (where XXX is INTEGER, DOUBLE, CHARACTER, or SCALAR depending on the type of argument
required); passing 0 from Fortran will crash the code. Note that the C convention of passing NULL (or 0)
cannot be used. For example, when no options prefix is desired in the routine PetscOptionsGetInt(),
one must use the following command in Fortran:

146 Chapter 3. Additional Information

PETSc Users Manual, Release 3.14.2

call PetscOptionsGetInt(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,PETSC_NULL_CHARACTER,
↪→'-name',N,flg,ierr)

This Fortran requirement is inconsistent with C, where the user can employ NULL for all null arguments.

Duplicating Multiple Vectors

The Fortran interface to VecDuplicateVecs() differs slightly from the C/C++ variant because Fortran
does not allow conventional arrays to be returned in routine arguments. To create n vectors of the same
format as an existing vector, the user must declare a vector array, v_new of size n. Then, after VecDu-
plicateVecs() has been called, v_new will contain (pointers to) the new PETSc vector objects. When
finished with the vectors, the user should destroy them by calling VecDestroyVecs(). For example, the
following code fragment duplicates v_old to form two new vectors, v_new(1) and v_new(2).

Vec v_old, v_new(2)
PetscInt ierr
PetscScalar alpha
....
call VecDuplicateVecs(v_old,2,v_new,ierr)
alpha = 4.3
call VecSet(v_new(1),alpha,ierr)
alpha = 6.0
call VecSet(v_new(2),alpha,ierr)
....
call VecDestroyVecs(2, &v_new,ierr)

Matrix, Vector and IS Indices

All matrices, vectors and IS in PETSc use zero-based indexing, regardless of whether C or Fortran is being
used. The interface routines, such as MatSetValues() and VecSetValues(), always use zero indexing.
See Basic Matrix Operations for further details.

Setting Routines

When a function pointer is passed as an argument to a PETSc function, such as the test in KSPSetCon-
vergenceTest(), it is assumed that this pointer references a routine written in the same language as the
PETSc interface function that was called. For instance, if KSPSetConvergenceTest() is called from C,
the test argument is assumed to be a C function. Likewise, if it is called from Fortran, the test is assumed
to be written in Fortran.

Compiling and Linking Fortran Programs

See Writing Application Codes with PETSc.

3.1. PETSc for Fortran Users 147

PETSc Users Manual, Release 3.14.2

Routines with Different Fortran Interfaces

The following Fortran routines differ slightly from their C counterparts; see the manual pages and previous
discussion in this chapter for details:

PetscInitialize(char *filename,int ierr)
PetscError(MPI_COMM,int err,char *message,int ierr)
VecGetArray(), MatDenseGetArray()
ISGetIndices(),
VecDuplicateVecs(), VecDestroyVecs()
PetscOptionsGetString()

The following functions are not supported in Fortran:

PetscFClose(), PetscFOpen(), PetscFPrintf(), PetscPrintf()
PetscPopErrorHandler(), PetscPushErrorHandler()
PetscInfo()
PetscSetDebugger()
VecGetArrays(), VecRestoreArrays()
PetscViewerASCIIGetPointer(), PetscViewerBinaryGetDescriptor()
PetscViewerStringOpen(), PetscViewerStringSPrintf()
PetscOptionsGetStringArray()

PETSc includes some support for direct use of Fortran90 pointers. Current routines include:

VecGetArrayF90(), VecRestoreArrayF90()
VecGetArrayReadF90(), VecRestoreArrayReadF90()
VecDuplicateVecsF90(), VecDestroyVecsF90()
DMDAVecGetArrayF90(), DMDAVecGetArrayReadF90(), ISLocalToGlobalMappingGetIndicesF90()
MatDenseGetArrayF90(), MatDenseRestoreArrayF90()
ISGetIndicesF90(), ISRestoreIndicesF90()

See the manual pages for details and pointers to example programs.

3.1.2 Sample Fortran Programs

Sample programs that illustrate the PETSc interface for Fortran are given below, corresponding to Vec
Test ex19f, Vec Tutorial ex4f, Draw Test ex5f, and SNES Tutorial ex1f, respectively. We also refer Fortran
programmers to the C examples listed throughout the manual, since PETSc usage within the two languages
differs only slightly.

Listing: src/vec/vec/tests/ex19f.F

!
!

program main
#include <petsc/finclude/petscvec.h>

use petscvec
implicit none

!
! This example demonstrates basic use of the PETSc Fortran interface
! to vectors.
!

PetscInt n
PetscErrorCode ierr

(continues on next page)

148 Chapter 3. Additional Information

https://www.mcs.anl.gov/petsc/petsc-current/src/vec/vec/tests/ex19f.F.html
https://www.mcs.anl.gov/petsc/petsc-current/src/vec/vec/tests/ex19f.F.html
https://www.mcs.anl.gov/petsc/petsc-current/src/vec/vec/tutorials/ex4f.F.html
https://www.mcs.anl.gov/petsc/petsc-current/src/sys/classes/draw/tests/ex5f.F.html
https://www.mcs.anl.gov/petsc/petsc-current/src/snes/tutorials/ex1f.F90.html

PETSc Users Manual, Release 3.14.2

(continued from previous page)
PetscBool flg
PetscScalar one,two,three,dot
PetscReal norm,rdot
Vec x,y,w
PetscOptions options

n = 20
one = 1.0
two = 2.0
three = 3.0

call PetscInitialize(PETSC_NULL_CHARACTER,ierr)
if (ierr .ne. 0) then

print*,'Unable to initialize PETSc'
stop

endif
call PetscOptionsCreate(options,ierr)
call PetscOptionsGetInt(options,PETSC_NULL_CHARACTER, &

& '-n',n,flg,ierr)
call PetscOptionsDestroy(options,ierr)

! Create a vector, then duplicate it
call VecCreate(PETSC_COMM_WORLD,x,ierr)
call VecSetSizes(x,PETSC_DECIDE,n,ierr)
call VecSetFromOptions(x,ierr)
call VecDuplicate(x,y,ierr)
call VecDuplicate(x,w,ierr)

call VecSet(x,one,ierr)
call VecSet(y,two,ierr)

call VecDot(x,y,dot,ierr)
rdot = PetscRealPart(dot)
write(6,100) rdot

100 format('Result of inner product ',f10.4)

call VecScale(x,two,ierr)
call VecNorm(x,NORM_2,norm,ierr)
write(6,110) norm

110 format('Result of scaling ',f10.4)

call VecCopy(x,w,ierr)
call VecNorm(w,NORM_2,norm,ierr)
write(6,120) norm

120 format('Result of copy ',f10.4)

call VecAXPY(y,three,x,ierr)
call VecNorm(y,NORM_2,norm,ierr)
write(6,130) norm

130 format('Result of axpy ',f10.4)

call VecDestroy(x,ierr)
call VecDestroy(y,ierr)
call VecDestroy(w,ierr)
call PetscFinalize(ierr)
end

(continues on next page)

3.1. PETSc for Fortran Users 149

PETSc Users Manual, Release 3.14.2

(continued from previous page)

!/*TEST
!
! test:
!
!TEST*/

Listing: src/vec/vec/tutorials/ex4f.F

!
!
! Description: Illustrates the use of VecSetValues() to set
! multiple values at once; demonstrates VecGetArray().
!
!/*T
! Concepts: vectors^assembling;
! Concepts: vectors^arrays of vectors;
! Processors: 1
!T*/
! ---

program main
#include <petsc/finclude/petscvec.h>

use petscvec
implicit none

! -
! Macro definitions
! -
!
! Macros to make clearer the process of setting values in vectors and
! getting values from vectors.
!
! - The element xx_a(ib) is element ib+1 in the vector x
! - Here we add 1 to the base array index to facilitate the use of
! conventional Fortran 1-based array indexing.
!
#define xx_a(ib) xx_v(xx_i + (ib))
#define yy_a(ib) yy_v(yy_i + (ib))

! -
! Beginning of program
! -

PetscScalar xwork(6)
PetscScalar xx_v(1),yy_v(1)
PetscInt i,n,loc(6),isix
PetscErrorCode ierr
PetscOffset xx_i,yy_i
Vec x,y

call PetscInitialize(PETSC_NULL_CHARACTER,ierr)
if (ierr .ne. 0) then

(continues on next page)

150 Chapter 3. Additional Information

PETSc Users Manual, Release 3.14.2

(continued from previous page)
print*,'PetscInitialize failed'
stop

endif
n = 6
isix = 6

! Create initial vector and duplicate it

call VecCreateSeq(PETSC_COMM_SELF,n,x,ierr)
call VecDuplicate(x,y,ierr)

! Fill work arrays with vector entries and locations. Note that
! the vector indices are 0-based in PETSc (for both Fortran and
! C vectors)

do 10 i=1,n
loc(i) = i-1
xwork(i) = 10.0*real(i)

10 continue

! Set vector values. Note that we set multiple entries at once.
! Of course, usually one would create a work array that is the
! natural size for a particular problem (not one that is as long
! as the full vector).

call VecSetValues(x,isix,loc,xwork,INSERT_VALUES,ierr)

! Assemble vector

call VecAssemblyBegin(x,ierr)
call VecAssemblyEnd(x,ierr)

! View vector
call PetscObjectSetName(x, 'initial vector:',ierr)
call VecView(x,PETSC_VIEWER_STDOUT_SELF,ierr)
call VecCopy(x,y,ierr)

! Get a pointer to vector data.
! - For default PETSc vectors, VecGetArray() returns a pointer to
! the data array. Otherwise, the routine is implementation dependent.
! - You MUST call VecRestoreArray() when you no longer need access to
! the array.
! - Note that the Fortran interface to VecGetArray() differs from the
! C version. See the users manual for details.

call VecGetArray(x,xx_v,xx_i,ierr)
call VecGetArray(y,yy_v,yy_i,ierr)

! Modify vector data

do 30 i=1,n
xx_a(i) = 100.0*real(i)
yy_a(i) = 1000.0*real(i)

30 continue

! Restore vectors

(continues on next page)

3.1. PETSc for Fortran Users 151

PETSc Users Manual, Release 3.14.2

(continued from previous page)

call VecRestoreArray(x,xx_v,xx_i,ierr)
call VecRestoreArray(y,yy_v,yy_i,ierr)

! View vectors
call PetscObjectSetName(x, 'new vector 1:',ierr)
call VecView(x,PETSC_VIEWER_STDOUT_SELF,ierr)

call PetscObjectSetName(y, 'new vector 2:',ierr)
call VecView(y,PETSC_VIEWER_STDOUT_SELF,ierr)

! Free work space. All PETSc objects should be destroyed when they
! are no longer needed.

call VecDestroy(x,ierr)
call VecDestroy(y,ierr)
call PetscFinalize(ierr)
end

!/*TEST
!
! test:
!
!TEST*/

Listing: src/sys/classes/draw/tests/ex5f.F

!
!

program main
#include <petsc/finclude/petscsys.h>
#include <petsc/finclude/petscdraw.h>

use petscsys
implicit none

!
! This example demonstrates basic use of the Fortran interface for
! PetscDraw routines.
!

PetscDraw draw
PetscDrawLG lg
PetscDrawAxis axis
PetscErrorCode ierr
PetscBool flg
integer x,y,width,height
PetscScalar xd,yd
PetscReal ten
PetscInt i,n,w,h
PetscInt one

n = 15
x = 0
y = 0
w = 400

(continues on next page)

152 Chapter 3. Additional Information

PETSc Users Manual, Release 3.14.2

(continued from previous page)
h = 300
ten = 10.0
one = 1

call PetscInitialize(PETSC_NULL_CHARACTER,ierr)
if (ierr .ne. 0) then

print*,'Unable to initialize PETSc'
stop

endif

! GetInt requires a PetscInt so have to do this ugly setting
call PetscOptionsGetInt(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER, &
& '-width',w, flg,ierr)
width = int(w)
call PetscOptionsGetInt(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER, &
& '-height',h,flg,ierr)
height = int(h)
call PetscOptionsGetInt(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER, &
& '-n',n,flg,ierr)

call PetscDrawCreate(PETSC_COMM_WORLD,PETSC_NULL_CHARACTER, &
& PETSC_NULL_CHARACTER,x,y,width,height,draw,ierr)
call PetscDrawSetFromOptions(draw,ierr)

call PetscDrawLGCreate(draw,one,lg,ierr)
call PetscDrawLGGetAxis(lg,axis,ierr)
call PetscDrawAxisSetColors(axis,PETSC_DRAW_BLACK,PETSC_DRAW_RED, &
& PETSC_DRAW_BLUE,ierr)
call PetscDrawAxisSetLabels(axis,'toplabel','xlabel','ylabel', &
& ierr)

do 10, i=0,n-1
xd = real(i) - 5.0
yd = xd*xd
call PetscDrawLGAddPoint(lg,xd,yd,ierr)

10 continue

call PetscDrawLGSetUseMarkers(lg,PETSC_TRUE,ierr)
call PetscDrawLGDraw(lg,ierr)

call PetscSleep(ten,ierr)

call PetscDrawLGDestroy(lg,ierr)
call PetscDrawDestroy(draw,ierr)
call PetscFinalize(ierr)
end

!/*TEST
!
! build:
! requires: x
!
! test:
! output_file: output/ex1_1.out
!
!TEST*/

3.1. PETSc for Fortran Users 153

PETSc Users Manual, Release 3.14.2

Listing: src/snes/tutorials/ex1f.F90

!
!
! Description: Uses the Newton method to solve a two-variable system.
!
!!/*T
! Concepts: SNES^basic uniprocessor example
! Processors: 1
!T*/

program main
#include <petsc/finclude/petsc.h>

use petsc
implicit none

! -
! Variable declarations
! -
!
! Variables:
! snes - nonlinear solver
! ksp - linear solver
! pc - preconditioner context
! ksp - Krylov subspace method context
! x, r - solution, residual vectors
! J - Jacobian matrix
! its - iterations for convergence
!

SNES snes
PC pc
KSP ksp
Vec x,r
Mat J
SNESLineSearch linesearch
PetscErrorCode ierr
PetscInt its,i2,i20
PetscMPIInt size,rank
PetscScalar pfive
PetscReal tol
PetscBool setls

#if defined(PETSC_USE_LOG)
PetscViewer viewer

#endif
double precision threshold,oldthreshold

! Note: Any user-defined Fortran routines (such as FormJacobian)
! MUST be declared as external.

external FormFunction, FormJacobian, MyLineSearch

! -
! Macro definitions
! -
!
! Macros to make clearer the process of setting values in vectors and
! getting values from vectors. These vectors are used in the routines

(continues on next page)

154 Chapter 3. Additional Information

PETSc Users Manual, Release 3.14.2

(continued from previous page)
! FormFunction() and FormJacobian().
! - The element lx_a(ib) is element ib in the vector x
!
#define lx_a(ib) lx_v(lx_i + (ib))
#define lf_a(ib) lf_v(lf_i + (ib))
!
! -
! Beginning of program
! -

call PetscInitialize(PETSC_NULL_CHARACTER,ierr)
if (ierr .ne. 0) then

print*,'Unable to initialize PETSc'
stop

endif
call PetscLogNestedBegin(ierr);CHKERRA(ierr)
threshold = 1.0
call PetscLogSetThreshold(threshold,oldthreshold,ierr)

! dummy test of logging a reduction
#if defined(PETSC_USE_LOG)

ierr = PetscAReduce()
#endif

call MPI_Comm_size(PETSC_COMM_WORLD,size,ierr)
call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr)
if (size .ne. 1) then; SETERRA(PETSC_COMM_SELF,PETSC_ERR_WRONG_MPI_SIZE,

↪→'Uniprocessor example'); endif

i2 = 2
i20 = 20

! - - - - - - - - - -- -
! Create nonlinear solver context
! - - - - - - - - - -- -

call SNESCreate(PETSC_COMM_WORLD,snes,ierr)

! -
! Create matrix and vector data structures; set corresponding routines
! -

! Create vectors for solution and nonlinear function

call VecCreateSeq(PETSC_COMM_SELF,i2,x,ierr)
call VecDuplicate(x,r,ierr)

! Create Jacobian matrix data structure

call MatCreate(PETSC_COMM_SELF,J,ierr)
call MatSetSizes(J,PETSC_DECIDE,PETSC_DECIDE,i2,i2,ierr)
call MatSetFromOptions(J,ierr)
call MatSetUp(J,ierr)

! Set function evaluation routine and vector

call SNESSetFunction(snes,r,FormFunction,0,ierr)

! Set Jacobian matrix data structure and Jacobian evaluation routine

(continues on next page)

3.1. PETSc for Fortran Users 155

PETSc Users Manual, Release 3.14.2

(continued from previous page)

call SNESSetJacobian(snes,J,J,FormJacobian,0,ierr)

! -
! Customize nonlinear solver; set runtime options
! -

! Set linear solver defaults for this problem. By extracting the
! KSP, KSP, and PC contexts from the SNES context, we can then
! directly call any KSP, KSP, and PC routines to set various options.

call SNESGetKSP(snes,ksp,ierr)
call KSPGetPC(ksp,pc,ierr)
call PCSetType(pc,PCNONE,ierr)
tol = 1.e-4
call KSPSetTolerances(ksp,tol,PETSC_DEFAULT_REAL, &
& PETSC_DEFAULT_REAL,i20,ierr)

! Set SNES/KSP/KSP/PC runtime options, e.g.,
! -snes_view -snes_monitor -ksp_type <ksp> -pc_type <pc>
! These options will override those specified above as long as
! SNESSetFromOptions() is called _after_ any other customization
! routines.

call SNESSetFromOptions(snes,ierr)

call PetscOptionsHasName(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER, &
& '-setls',setls,ierr)

if (setls) then
call SNESGetLineSearch(snes, linesearch, ierr)
call SNESLineSearchSetType(linesearch, 'shell', ierr)
call SNESLineSearchShellSetUserFunc(linesearch, MyLineSearch, &

& 0, ierr)
endif

! -
! Evaluate initial guess; then solve nonlinear system
! -

! Note: The user should initialize the vector, x, with the initial guess
! for the nonlinear solver prior to calling SNESSolve(). In particular,
! to employ an initial guess of zero, the user should explicitly set
! this vector to zero by calling VecSet().

pfive = 0.5
call VecSet(x,pfive,ierr)
call SNESSolve(snes,PETSC_NULL_VEC,x,ierr)

! View solver converged reason; we could instead use the option -snes_converged_
↪→reason

call SNESConvergedReasonView(snes,PETSC_VIEWER_STDOUT_WORLD,ierr)

call SNESGetIterationNumber(snes,its,ierr);
if (rank .eq. 0) then

(continues on next page)

156 Chapter 3. Additional Information

PETSc Users Manual, Release 3.14.2

(continued from previous page)
write(6,100) its

endif
100 format('Number of SNES iterations = ',i5)

! -
! Free work space. All PETSc objects should be destroyed when they
! are no longer needed.
! -

call VecDestroy(x,ierr)
call VecDestroy(r,ierr)
call MatDestroy(J,ierr)
call SNESDestroy(snes,ierr)

#if defined(PETSC_USE_LOG)
call PetscViewerASCIIOpen(PETSC_COMM_WORLD,'filename.xml',viewer,ierr)
call PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_XML,ierr)
call PetscLogView(viewer,ierr)
call PetscViewerDestroy(viewer,ierr)

#endif
call PetscFinalize(ierr)
end

!
! --
!
! FormFunction - Evaluates nonlinear function, F(x).
!
! Input Parameters:
! snes - the SNES context
! x - input vector
! dummy - optional user-defined context (not used here)
!
! Output Parameter:
! f - function vector
!

subroutine FormFunction(snes,x,f,dummy,ierr)
use petscsnes
implicit none

SNES snes
Vec x,f
PetscErrorCode ierr
integer dummy(*)

! Declarations for use with local arrays

PetscScalar lx_v(2),lf_v(2)
PetscOffset lx_i,lf_i

! Get pointers to vector data.
! - For default PETSc vectors, VecGetArray() returns a pointer to
! the data array. Otherwise, the routine is implementation dependent.
! - You MUST call VecRestoreArray() when you no longer need access to
! the array.
! - Note that the Fortran interface to VecGetArray() differs from the
! C version. See the Fortran chapter of the users manual for details.

(continues on next page)

3.1. PETSc for Fortran Users 157

PETSc Users Manual, Release 3.14.2

(continued from previous page)
call VecGetArrayRead(x,lx_v,lx_i,ierr)
call VecGetArray(f,lf_v,lf_i,ierr)

! Compute function

lf_a(1) = lx_a(1)*lx_a(1) &
& + lx_a(1)*lx_a(2) - 3.0
lf_a(2) = lx_a(1)*lx_a(2) &
& + lx_a(2)*lx_a(2) - 6.0

! Restore vectors

call VecRestoreArrayRead(x,lx_v,lx_i,ierr)
call VecRestoreArray(f,lf_v,lf_i,ierr)

return
end

! ---
!
! FormJacobian - Evaluates Jacobian matrix.
!
! Input Parameters:
! snes - the SNES context
! x - input vector
! dummy - optional user-defined context (not used here)
!
! Output Parameters:
! A - Jacobian matrix
! B - optionally different preconditioning matrix
! flag - flag indicating matrix structure
!

subroutine FormJacobian(snes,X,jac,B,dummy,ierr)
use petscsnes
implicit none

SNES snes
Vec X
Mat jac,B
PetscScalar A(4)
PetscErrorCode ierr
PetscInt idx(2),i2
integer dummy(*)

! Declarations for use with local arrays

PetscScalar lx_v(2)
PetscOffset lx_i

! Get pointer to vector data

i2 = 2
call VecGetArrayRead(x,lx_v,lx_i,ierr)

! Compute Jacobian entries and insert into matrix.
! - Since this is such a small problem, we set all entries for

(continues on next page)

158 Chapter 3. Additional Information

PETSc Users Manual, Release 3.14.2

(continued from previous page)
! the matrix at once.
! - Note that MatSetValues() uses 0-based row and column numbers
! in Fortran as well as in C (as set here in the array idx).

idx(1) = 0
idx(2) = 1
A(1) = 2.0*lx_a(1) + lx_a(2)
A(2) = lx_a(1)
A(3) = lx_a(2)
A(4) = lx_a(1) + 2.0*lx_a(2)
call MatSetValues(B,i2,idx,i2,idx,A,INSERT_VALUES,ierr)

! Restore vector

call VecRestoreArrayRead(x,lx_v,lx_i,ierr)

! Assemble matrix

call MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY,ierr)
call MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY,ierr)
if (B .ne. jac) then

call MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY,ierr)
call MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY,ierr)

endif

return
end

subroutine MyLineSearch(linesearch, lctx, ierr)
use petscsnes
implicit none

SNESLineSearch linesearch
SNES snes
integer lctx
Vec x, f,g, y, w
PetscReal ynorm,gnorm,xnorm
PetscBool flag
PetscErrorCode ierr

PetscScalar mone

mone = -1.0
call SNESLineSearchGetSNES(linesearch, snes, ierr)
call SNESLineSearchGetVecs(linesearch, x, f, y, w, g, ierr)
call VecNorm(y,NORM_2,ynorm,ierr)
call VecAXPY(x,mone,y,ierr)
call SNESComputeFunction(snes,x,f,ierr)
call VecNorm(f,NORM_2,gnorm,ierr)
call VecNorm(x,NORM_2,xnorm,ierr)
call VecNorm(y,NORM_2,ynorm,ierr)
call SNESLineSearchSetNorms(linesearch, xnorm, gnorm, ynorm, &
& ierr)
flag = PETSC_FALSE
return

(continues on next page)

3.1. PETSc for Fortran Users 159

PETSc Users Manual, Release 3.14.2

(continued from previous page)
end

!/*TEST
!
! test:
! args: -ksp_gmres_cgs_refinement_type refine_always -snes_monitor_short
! requires: !single
!
!TEST*/

Array Arguments

This material is no longer relevent since one should use VecGetArrayF90() and the other routines that
utilize Fortran pointers, instead of the code below, but it is included for historical reasons and because many
of the Fortran examples still utilize the old approach.

Since Fortran 77 does not allow arrays to be returned in routine arguments, all PETSc routines that return
arrays, such as VecGetArray(), MatDenseGetArray(), and ISGetIndices(), are defined slightly
differently in Fortran than in C. Instead of returning the array itself, these routines accept as input a user-
specified array of dimension one and return an integer index to the actual array used for data storage within
PETSc. The Fortran interface for several routines is as follows:

PetscScalar xx_v(1), aa_v(1)
PetscErrorCode ierr
PetscInt ss_v(1), dd_v(1), nloc
PetscOffset ss_i, xx_i, aa_i, dd_i
Vec x
Mat A
IS s
DM d

call VecGetArray(x,xx_v,xx_i,ierr)
call MatDenseGetArray(A,aa_v,aa_i,ierr)
call ISGetIndices(s,ss_v,ss_i,ierr)

To access array elements directly, both the user-specified array and the integer index must then be used
together. For example, the following Fortran program fragment illustrates directly setting the values of a
vector array instead of using VecSetValues(). Note the (optional) use of the preprocessor #define
statement to enable array manipulations in the conventional Fortran manner.

#define xx_a(ib) xx_v(xx_i + (ib))

double precision xx_v(1)
PetscOffset xx_i
PetscErrorCode ierr
PetscInt i, n
Vec x
call VecGetArray(x,xx_v,xx_i,ierr)
call VecGetLocalSize(x,n,ierr)
do 10, i=1,n
xx_a(i) = 3*i + 1

10 continue
call VecRestoreArray(x,xx_v,xx_i,ierr)

160 Chapter 3. Additional Information

PETSc Users Manual, Release 3.14.2

The Vec ex4f Tutorial listed above contains an example of using VecGetArray() within a Fortran routine.

Since in this case the array is accessed directly from Fortran, indexing begins with 1, not 0 (unless the array
is declared as xx_v(0:1)). This is different from the use of VecSetValues() where, indexing always
starts with 0.

Note: If using VecGetArray(), MatDenseGetArray(), or ISGetIndices(), from Fortran, the user
must not compile the Fortran code with options to check for “array entries out of bounds” (e.g., on the IBM
RS/6000 this is done with the -C compiler option, so never use the -C option with this).

3.2 Using MATLAB with PETSc

There are three basic ways to use MATLAB with PETSc:

1. (Dumping Data for MATLAB) dumping files to be read into MATLAB,

2. (Sending Data to an Interactive MATLAB Session) automatically sending data from a running PETSc
program to a MATLAB process where you may interactively type MATLAB commands (or run scripts),
and

3. (Using the MATLAB Compute Engine) automatically sending data back and forth between PETSc
and MATLAB where MATLAB commands are issued not interactively but from a script or the PETSc
program (this uses the MATLAB Engine).

3.2.1 Dumping Data for MATLAB

Dumping ASCII MATLAB data

One can dump PETSc matrices and vectors to the screen in an ASCII format that MATLAB can read
in directly. This is done with the command line options -vec_view ::ascii_matlab or -mat_view
::ascii_matlab. To write a a file, use -vec_view :filename.m:ascii_matlab or -mat_view
:filename.m:ascii_matlab.

This causes the PETSc program to print the vectors and matrices every time VecAssemblyEnd()
or MatAssemblyEnd() are called. To provide finer control over when and what vectors and matri-
ces are dumped one can use the VecView() and MatView() functions with a viewer type of ASCII
(see PetscViewerASCIIOpen(), PETSC_VIEWER_STDOUT_WORLD, PETSC_VIEWER_STDOUT_SELF,
or PETSC_VIEWER_STDOUT_(MPI_Comm)). Before calling the viewer set the output type with, for ex-
ample,

PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_MATLAB);
VecView(A,PETSC_VIEWER_STDOUT_WORLD);
PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD);

The name of each PETSc variable printed for MATLAB may be set with

PetscObjectSetName((PetscObject)A,"name");

If no name is specified, the object is given a default name using PetscObjectName().

3.2. Using MATLAB with PETSc 161

PETSc Users Manual, Release 3.14.2

Dumping Binary Data for MATLAB

One can also read PETSc binary files (see Viewers: Looking at PETSc Objects) directly into MATLAB via
the scripts available in $PETSC_DIR/share/matlab. This requires less disk space and is recommended
for all but the smallest data sizes. One can also use

PetscViewerPushFormat(viewer,PETSC_VIEWER_BINARY_MATLAB)

to dump both a PETSc binary file and a corresponding .info file which PetscReadBinaryMatlab.m
will use to format the binary file in more complex cases, such as using a DMDA. For an example, see DM
Tutorial ex7. In MATLAB (R2015b), one may then generate a useful structure. For example:

setenv('PETSC_DIR','~/petsc');
setenv('PETSC_ARCH','arch-darwin-double-debug');
addpath('~/petsc/share/petsc/matlab');
gridData=PetscReadBinaryMatlab('output_file');

3.2.2 Sending Data to an Interactive MATLAB Session

One creates a viewer to MATLAB via

PetscViewerSocketOpen(MPI_Comm,char *machine,int port,PetscViewer *v);

(port is usually set to PETSC_DEFAULT; use NULL for the machine if the MATLAB interactive session is
running on the same machine as the PETSc program) and then sends matrices or vectors via

VecView(Vec A,v);
MatView(Mat B,v);

See Viewers: Looking at PETSc Objects for more on PETSc viewers. One may start the MATLAB pro-
gram manually or use the PETSc command PetscStartMatlab(MPI_Comm,char *machine,char
*script,FILE **fp); where machine and script may be NULL. It is also possible to start your
PETSc program from MATLAB via launch().

To receive the objects in MATLAB, make sure that ${PETSC_DIR}/${PETSC_ARCH}/lib/petsc/
matlab and ${PETSC_DIR}/share/petsc/matlab are in the MATLAB path. Use p =
PetscOpenSocket(); (or p = PetscOpenSocket(portnum) if you provided a port number in your
call to PetscViewerSocketOpen()), and then a = PetscBinaryRead(p); returns the object passed
from PETSc. PetscBinaryRead() may be called any number of times. Each call should correspond on
the PETSc side with viewing a single vector or matrix. close() closes the connection from MATLAB. On
the PETSc side, one should destroy the viewer object with PetscViewerDestroy().

For an example, which includes sending data back to PETSc, see Vec Tutorial ex42 and the associated .m
file.

162 Chapter 3. Additional Information

https://www.mcs.anl.gov/petsc/petsc-current/src/dm/tutorials/ex7.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/dm/tutorials/ex7.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/vec/vec/tutorials/ex42.c.html

PETSc Users Manual, Release 3.14.2

3.2.3 Using the MATLAB Compute Engine

One creates access to the MATLAB engine via

PetscMatlabEngineCreate(MPI_Comm comm,char *machine,PetscMatlabEngine *e);

where machine is the name of the machine hosting MATLAB (NULL may be used for localhost). One can
send objects to MATLAB via

PetscMatlabEnginePut(PetscMatlabEngine e,PetscObject obj);

One can get objects via

PetscMatlabEngineGet(PetscMatlabEngine e,PetscObject obj);

Similarly, one can send arrays via

PetscMatlabEnginePutArray(PetscMatlabEngine e,int m,int n,PetscScalar *array,char␣
↪→*name);

and get them back via

PetscMatlabEngineGetArray(PetscMatlabEngine e,int m,int n,PetscScalar *array,char␣
↪→*name);

One cannot use MATLAB interactively in this mode but one can send MATLAB commands via

PetscMatlabEngineEvaluate(PetscMatlabEngine,"format",...);

where format has the usual printf() format. For example,

PetscMatlabEngineEvaluate(PetscMatlabEngine,"x = \%g *y + z;",avalue);

The name of each PETSc variable passed to MATLAB may be set with

PetscObjectSetName((PetscObject)A,"name");

Text responses can be returned from MATLAB via

PetscMatlabEngineGetOutput(PetscMatlabEngine,char **);

or

PetscMatlabEnginedPrintOutput(PetscMatlabEngine,FILE*).

There is a short-cut to starting the MATLAB engine with PETSC_MATLAB_ENGINE_(MPI_Comm).

3.2. Using MATLAB with PETSc 163

PETSc Users Manual, Release 3.14.2

3.3 Profiling

PETSc includes a consistent, lightweight scheme to allow the profiling of application programs. The PETSc
routines automatically log performance data if certain options are specified at runtime. The user can also
log information about application codes for a complete picture of performance. In addition, as described in
Interpreting -log_view Output: The Basics, PETSc provides a mechanism for printing informative messages
about computations. Basic Profiling Information introduces the various profiling options in PETSc, while
the remainder of the chapter focuses on details such as monitoring application codes and tips for accurate
profiling.

3.3.1 Basic Profiling Information

If an application code and the PETSc libraries have been configured with --with-log=1, the default, then
various kinds of profiling of code between calls to PetscInitialize() and PetscFinalize() can be
activated at runtime. The profiling options include the following:

• -log_view - Prints an ASCII version of performance data at program’s conclusion. These statistics
are comprehensive and concise and require little overhead; thus, -log_view is intended as the primary
means of monitoring the performance of PETSc codes.

• -info [infofile] - Prints verbose information about code to stdout or an optional file. This
option provides details about algorithms, data structures, etc. Since the overhead of printing such
output slows a code, this option should not be used when evaluating a program’s performance.

• -log_trace [logfile] - Traces the beginning and ending of all PETSc events. This option, which
can be used in conjunction with -info, is useful to see where a program is hanging without running
in the debugger.

As discussed in Using -log_mpe with Jumpshot, additional profiling can be done with MPE.

Interpreting -log_view Output: The Basics

As shown in the listing in Profiling Programs, the option -log_view activates printing of profile data to
standard output at the conclusion of a program. Profiling data can also be printed at any time within a
program by calling PetscLogView().

We print performance data for each routine, organized by PETSc libraries, followed by any user-defined
events (discussed in Profiling Application Codes). For each routine, the output data include the maximum
time and floating point operation (flop) rate over all processes. Information about parallel performance is
also included, as discussed in the following section.

For the purpose of PETSc floating point operation counting, we define one flop as one operation of any of the
following types: multiplication, division, addition, or subtraction. For example, one VecAXPY() operation,
which computes y = αx + y for vectors of length N , requires 2N flop (consisting of N additions and N
multiplications). Bear in mind that flop rates present only a limited view of performance, since memory
loads and stores are the real performance barrier.

For simplicity, the remainder of this discussion focuses on interpreting profile data for the KSP library,
which provides the linear solvers at the heart of the PETSc package. Recall the hierarchical organization
of the PETSc library, as shown in Numerical Libraries in PETSc. Each KSP solver is composed of a PC
(preconditioner) and a KSP (Krylov subspace) part, which are in turn built on top of the Mat (matrix) and
Vec (vector) modules. Thus, operations in the KSP module are composed of lower-level operations in these
packages. Note also that the nonlinear solvers library, SNES, is built on top of the KSP module, and the
timestepping library, TS, is in turn built on top of SNES.

164 Chapter 3. Additional Information

PETSc Users Manual, Release 3.14.2

We briefly discuss interpretation of the sample output in the listing, which was generated by solving a linear
system on one process using restarted GMRES and ILU preconditioning. The linear solvers in KSP consist of
two basic phases, KSPSetUp() and KSPSolve(), each of which consists of a variety of actions, depending
on the particular solution technique. For the case of using the PCILU preconditioner and KSPGMRES Krylov
subspace method, the breakdown of PETSc routines is listed below. As indicated by the levels of indentation,
the operations in KSPSetUp() include all of the operations within PCSetUp(), which in turn include
MatILUFactor(), and so on.

• KSPSetUp - Set up linear solver

– PCSetUp - Set up preconditioner

∗ MatILUFactor - Factor preconditioning matrix

· MatILUFactorSymbolic - Symbolic factorization phase

· MatLUFactorNumeric - Numeric factorization phase

• KSPSolve - Solve linear system

– PCApply - Apply preconditioner

∗ MatSolve - Forward/backward triangular solves

– KSPGMRESOrthog - Orthogonalization in GMRES

∗ VecDot or VecMDot - Inner products

– MatMult - Matrix-vector product

– MatMultAdd - Matrix-vector product + vector addition

∗ VecScale, VecNorm, VecAXPY, VecCopy, …

The summaries printed via -log_view reflect this routine hierarchy. For example, the performance sum-
maries for a particular high-level routine such as KSPSolve() include all of the operations accumulated in
the lower-level components that make up the routine.

Admittedly, we do not currently present the output with -log_view so that the hierarchy of PETSc
operations is completely clear, primarily because we have not determined a clean and uniform way to do
so throughout the library. Improvements may follow. However, for a particular problem, the user should
generally have an idea of the basic operations that are required for its implementation (e.g., which operations
are performed when using GMRES and ILU, as described above), so that interpreting the -log_view data
should be relatively straightforward.

Interpreting -log_view Output: Parallel Performance

We next discuss performance summaries for parallel programs, as shown within the listings below , which
present the combined output generated by the -log_view option. The program that generated this data
is KSP Tutorial ex10. The code loads a matrix and right-hand-side vector from a binary file and then solves
the resulting linear system; the program then repeats this process for a second linear system. This particular
case was run on four processors of an Intel x86_64 Linux cluster, using restarted GMRES and the block
Jacobi preconditioner, where each block was solved with ILU. The two input files medium and arco6 can
be downloaded from this FTP link.

The first listing presents an overall performance summary, including times, floating-point operations, com-
putational rates, and message-passing activity (such as the number and size of messages sent and collective
operations). Summaries for various user-defined stages of monitoring (as discussed in Profiling Multiple
Sections of Code) are also given. Information about the various phases of computation then follow (as
shown separately here in the second listing). Finally, a summary of memory usage and object creation and
destruction is presented.

3.3. Profiling 165

https://www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/tutorials/ex10.c.html
http://ftp.mcs.anl.gov/pub/petsc/Datafiles/matrices/

PETSc Users Manual, Release 3.14.2

mpiexec -n 4 ./ex10 -f0 medium -f1 arco6 -ksp_gmres_classicalgramschmidt -log_view -
↪→mat_type baij \

-matload_block_size 3 -pc_type bjacobi -options_left

Number of iterations = 19
Residual norm 1.088292e-05
Number of iterations = 59
Residual norm 3.871022e-02
-- PETSc Performance Summary: ------------
↪→----------------------------------

./ex10 on a intel-bdw-opt named beboplogin4 with 4 processors, by jczhang Mon Apr 23␣
↪→13:36:54 2018
Using Petsc Development GIT revision: v3.9-163-gbe3efd42 GIT Date: 2018-04-16␣
↪→10:45:40 -0500

Max Max/Min Avg Total
Time (sec): 1.849e-01 1.00002 1.849e-01
Objects: 1.060e+02 1.00000 1.060e+02
Flop: 2.361e+08 1.00684 2.353e+08 9.413e+08
Flop/sec: 1.277e+09 1.00685 1.273e+09 5.091e+09
MPI Messages: 2.360e+02 1.34857 2.061e+02 8.245e+02
MPI Message Lengths: 1.256e+07 2.24620 4.071e+04 3.357e+07
MPI Reductions: 2.160e+02 1.00000

Summary of Stages: ----- Time ------ ----- Flop ----- --- Messages --- --␣
↪→Message Lengths -- -- Reductions --

Avg %Total Avg %Total counts %Total Avg ␣
↪→ %Total counts %Total
0: Main Stage: 5.9897e-04 0.3% 0.0000e+00 0.0% 0.000e+00 0.0% 0.
↪→000e+00 0.0% 2.000e+00 0.9%
1: Load System 0: 2.9113e-03 1.6% 0.0000e+00 0.0% 3.550e+01 4.3% 5.
↪→984e+02 0.1% 2.200e+01 10.2%
2: KSPSetUp 0: 7.7349e-04 0.4% 9.9360e+03 0.0% 0.000e+00 0.0% 0.
↪→000e+00 0.0% 2.000e+00 0.9%
3: KSPSolve 0: 1.7690e-03 1.0% 2.9673e+05 0.0% 1.520e+02 18.4% 1.
↪→800e+02 0.1% 3.900e+01 18.1%
4: Load System 1: 1.0056e-01 54.4% 0.0000e+00 0.0% 3.700e+01 4.5% 5.
↪→657e+05 62.4% 2.200e+01 10.2%
5: KSPSetUp 1: 5.6883e-03 3.1% 2.1205e+07 2.3% 0.000e+00 0.0% 0.
↪→000e+00 0.0% 2.000e+00 0.9%
6: KSPSolve 1: 7.2578e-02 39.3% 9.1979e+08 97.7% 6.000e+02 72.8% 2.
↪→098e+04 37.5% 1.200e+02 55.6%

--
↪→----------------------------------

.... [Summary of various phases, see part II below] ...

--
↪→----------------------------------

Memory usage is given in bytes:

Object Type Creations Destructions Memory Descendants' Mem.
Reports information only for process 0.
...

(continues on next page)

166 Chapter 3. Additional Information

PETSc Users Manual, Release 3.14.2

(continued from previous page)
--- Event Stage 3: KSPSolve 0

Matrix 0 4 23024 0.
Vector 20 30 60048 0.

Index Set 0 3 2568 0.
Vec Scatter 0 1 1264 0.

Krylov Solver 0 2 19592 0.
Preconditioner 0 2 1912 0.

We next focus on the summaries for the various phases of the computation, as given in the table within the
following listing. The summary for each phase presents the maximum times and flop rates over all processes,
as well as the ratio of maximum to minimum times and flop rates for all processes. A ratio of approximately
1 indicates that computations within a given phase are well balanced among the processes; as the ratio
increases, the balance becomes increasingly poor. Also, the total computational rate (in units of MFlop/sec)
is given for each phase in the final column of the phase summary table.

Total Mflop/sec = 10−6 ∗ (sum of flop over all processors)/(max time over all processors)

Note: Total computational rates < 1 MFlop are listed as 0 in this column of the phase summary table.
Additional statistics for each phase include the total number of messages sent, the average message length,
and the number of global reductions.

mpiexec -n 4 ./ex10 -f0 medium -f1 arco6 -ksp_gmres_classicalgramschmidt -log_view -
↪→mat_type baij \

-matload_block_size 3 -pc_type bjacobi -options_left

-- PETSc Performance Summary: ------------
↪→----------------------------------
.... [Overall summary, see part I] ...

Phase summary info:
Count: number of times phase was executed
Time and Flop/sec: Max - maximum over all processors

Ratio - ratio of maximum to minimum over all processors
Mess: number of messages sent
AvgLen: average message length
Reduct: number of global reductions
Global: entire computation
Stage: optional user-defined stages of a computation. Set stages with␣

↪→PetscLogStagePush() and PetscLogStagePop().
%T - percent time in this phase %F - percent flop in this phase
%M - percent messages in this phase %L - percent message lengths in this␣

↪→phase
%R - percent reductions in this phase

Total Mflop/s: 10^6 * (sum of flop over all processors)/(max time over all␣
↪→processors)
--
↪→----------------------------------
Phase Count Time (sec) Flop/sec ---␣
↪→Global --- --- Stage ---- Total

Max Ratio Max Ratio Mess AvgLen Reduct %T
↪→%F %M %L %R %T %F %M %L %R Mflop/s
--
↪→----------------------------------
...

(continues on next page)

3.3. Profiling 167

PETSc Users Manual, Release 3.14.2

(continued from previous page)
--- Event Stage 5: KSPSetUp 1

MatLUFactorNum 1 1.0 3.6440e-03 1.1 5.30e+06 1.0 0.0e+00 0.0e+00 0.0e+00 2 ␣
↪→2 0 0 0 62100 0 0 0 5819
MatILUFactorSym 1 1.0 1.7111e-03 1.4 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 1 ␣
↪→0 0 0 0 26 0 0 0 0 0
MatGetRowIJ 1 1.0 1.1921e-06 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 ␣
↪→0 0 0 0 0 0 0 0 0 0
MatGetOrdering 1 1.0 3.0041e-05 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 ␣
↪→0 0 0 0 1 0 0 0 0 0
KSPSetUp 2 1.0 6.6495e-04 1.5 0.00e+00 0.0 0.0e+00 0.0e+00 2.0e+00 0 ␣
↪→0 0 0 1 9 0 0 0100 0
PCSetUp 2 1.0 5.4271e-03 1.2 5.30e+06 1.0 0.0e+00 0.0e+00 0.0e+00 3 ␣
↪→2 0 0 0 90100 0 0 0 3907
PCSetUpOnBlocks 1 1.0 5.3999e-03 1.2 5.30e+06 1.0 0.0e+00 0.0e+00 0.0e+00 3 ␣
↪→2 0 0 0 90100 0 0 0 3927

--- Event Stage 6: KSPSolve 1

MatMult 60 1.0 2.4068e-02 1.1 6.54e+07 1.0 6.0e+02 2.1e+04 0.0e+00 12␣
↪→27 73 37 0 32 28100100 0 10731
MatSolve 61 1.0 1.9177e-02 1.0 5.99e+07 1.0 0.0e+00 0.0e+00 0.0e+00 10␣
↪→25 0 0 0 26 26 0 0 0 12491
VecMDot 59 1.0 1.4741e-02 1.3 4.86e+07 1.0 0.0e+00 0.0e+00 5.9e+01 7␣
↪→21 0 0 27 18 21 0 0 49 13189
VecNorm 61 1.0 3.0417e-03 1.4 3.29e+06 1.0 0.0e+00 0.0e+00 6.1e+01 1 ␣
↪→1 0 0 28 4 1 0 0 51 4332
VecScale 61 1.0 9.9802e-04 1.0 1.65e+06 1.0 0.0e+00 0.0e+00 0.0e+00 1 ␣
↪→1 0 0 0 1 1 0 0 0 6602
VecCopy 2 1.0 5.9128e-05 1.4 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 ␣
↪→0 0 0 0 0 0 0 0 0 0
VecSet 64 1.0 8.0323e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 ␣
↪→0 0 0 0 1 0 0 0 0 0
VecAXPY 3 1.0 7.4387e-05 1.1 1.62e+05 1.0 0.0e+00 0.0e+00 0.0e+00 0 ␣
↪→0 0 0 0 0 0 0 0 0 8712
VecMAXPY 61 1.0 8.8558e-03 1.1 5.18e+07 1.0 0.0e+00 0.0e+00 0.0e+00 5␣
↪→22 0 0 0 12 23 0 0 0 23393
VecScatterBegin 60 1.0 9.6416e-04 1.8 0.00e+00 0.0 6.0e+02 2.1e+04 0.0e+00 0 ␣
↪→0 73 37 0 1 0100100 0 0
VecScatterEnd 60 1.0 6.1543e-03 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 3 ␣
↪→0 0 0 0 8 0 0 0 0 0
VecNormalize 61 1.0 4.2675e-03 1.3 4.94e+06 1.0 0.0e+00 0.0e+00 6.1e+01 2 ␣
↪→2 0 0 28 5 2 0 0 51 4632
KSPGMRESOrthog 59 1.0 2.2627e-02 1.1 9.72e+07 1.0 0.0e+00 0.0e+00 5.9e+01 11␣
↪→41 0 0 27 29 42 0 0 49 17185
KSPSolve 1 1.0 7.2577e-02 1.0 2.31e+08 1.0 6.0e+02 2.1e+04 1.2e+02 39␣
↪→98 73 37 56 99100100100100 12673
PCSetUpOnBlocks 1 1.0 9.5367e-07 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 ␣
↪→0 0 0 0 0 0 0 0 0 0
PCApply 61 1.0 2.0427e-02 1.0 5.99e+07 1.0 0.0e+00 0.0e+00 0.0e+00 11␣
↪→25 0 0 0 28 26 0 0 0 11726
--
↪→----------------------------------
.... [Conclusion of overall summary, see part I] ...

As discussed in the preceding section, the performance summaries for higher-level PETSc routines include
the statistics for the lower levels of which they are made up. For example, the communication within

168 Chapter 3. Additional Information

PETSc Users Manual, Release 3.14.2

matrix-vector products MatMult() consists of vector scatter operations, as given by the routines Vec-
ScatterBegin() and VecScatterEnd().

The final data presented are the percentages of the various statistics (time (%T), flop/sec (%F), messages(%M),
average message length (%L), and reductions (%R)) for each event relative to the total computation and to any
user-defined stages (discussed in Profiling Multiple Sections of Code). These statistics can aid in optimizing
performance, since they indicate the sections of code that could benefit from various kinds of tuning. Hints
for Performance Tuning gives suggestions about achieving good performance with PETSc codes.

Using -log_mpe with Jumpshot

It is also possible to use the Jumpshot package [HL91] to visualize PETSc events. This package comes with
the MPE software, which is part of the MPICH [Getal] implementation of MPI. The option

-log_mpe [logfile]

creates a logfile of events appropriate for viewing with Jumpshot. The user can either use the default logging
file or specify a name via logfile. Events can be deactivated as described in Restricting Event Logging.

The user can also log MPI events. To do this, simply consider the PETSc application as any MPI application,
and follow the MPI implementation’s instructions for logging MPI calls. For example, when using MPICH,
this merely required adding -llmpich to the library list before -lmpich.

3.3.2 Profiling Application Codes

PETSc automatically logs object creation, times, and floating-point counts for the library routines. Users can
easily supplement this information by monitoring their application codes as well. The basic steps involved
in logging a user-defined portion of code, called an event, are shown in the code fragment below:

PetscLogEvent USER_EVENT;
PetscClassId classid;
PetscLogDouble user_event_flops;

PetscClassIdRegister("class name",&classid);
PetscLogEventRegister("User event name",classid,&USER_EVENT);
PetscLogEventBegin(USER_EVENT,0,0,0,0);
/* code segment to monitor */
PetscLogFlops(user_event_flops);
PetscLogEventEnd(USER_EVENT,0,0,0,0);

One must register the event by calling PetscLogEventRegister(), which assigns a unique integer to
identify the event for profiling purposes:

PetscLogEventRegister(const char string[],PetscClassId classid,PetscLogEvent *e);

Here string is a user-defined event name, and color is an optional user-defined event color (for use with
Jumpshot logging; see Using -log_mpe with Jumpshot); one should see the manual page for details. The ar-
gument returned in e should then be passed to the PetscLogEventBegin() and PetscLogEventEnd()
routines.

Events are logged by using the pair

PetscLogEventBegin(int event,PetscObject o1,PetscObject o2,PetscObject o3,PetscObject␣
↪→o4);
PetscLogEventEnd(int event,PetscObject o1,PetscObject o2,PetscObject o3,PetscObject␣
↪→o4);

3.3. Profiling 169

PETSc Users Manual, Release 3.14.2

The four objects are the PETSc objects that are most closely associated with the event. For instance, in
a matrix-vector product they would be the matrix and the two vectors. These objects can be omitted by
specifying 0 for o1 - o4. The code between these two routine calls will be automatically timed and logged
as part of the specified event.

The user can log the number of floating-point operations for this segment of code by calling

PetscLogFlops(number of flop for this code segment);

between the calls to PetscLogEventBegin() and PetscLogEventEnd(). This value will automatically
be added to the global flop counter for the entire program.

3.3.3 Profiling Multiple Sections of Code

By default, the profiling produces a single set of statistics for all code between the PetscInitialize()
and PetscFinalize() calls within a program. One can independently monitor up to ten stages of code
by switching among the various stages with the commands

PetscLogStagePush(PetscLogStage stage);
PetscLogStagePop();

where stage is an integer (0-9); see the manual pages for details. The command

PetscLogStageRegister(const char *name,PetscLogStage *stage)

allows one to associate a name with a stage; these names are printed whenever summaries are generated
with -log_view or PetscLogView(). The following code fragment uses three profiling stages within an
program.

PetscInitialize(int *argc,char ***args,0,0);
/* stage 0 of code here */
PetscLogStageRegister("Stage 0 of Code", &stagenum0);
for (i=0; i<ntimes; i++) {

PetscLogStageRegister("Stage 1 of Code", &stagenum1);
PetscLogStagePush(stagenum1);
/* stage 1 of code here */
PetscLogStagePop();
PetscLogStageRegister("Stage 2 of Code", &stagenum2);
PetscLogStagePush(stagenum2);
/* stage 2 of code here */
PetscLogStagePop();

}
PetscFinalize();

The listings above Figures [fig_exparprof] and show output generated by -log_view for a program that
employs several profiling stages. In particular, this program is subdivided into six stages except the Main
stage: loading a matrix and right-hand-side vector from a binary file, setting up the preconditioner, and
solving the linear system; this sequence is then repeated for a second linear system. For simplicity, the
second listing contains output only for stages 5 and 6 (linear solve of the second system), which comprise the
part of this computation of most interest to us in terms of performance monitoring. This code organization
(solving a small linear system followed by a larger system) enables generation of more accurate profiling
statistics for the second system by overcoming the often considerable overhead of paging, as discussed in
Accurate Profiling and Paging Overheads.

170 Chapter 3. Additional Information

PETSc Users Manual, Release 3.14.2

3.3.4 Restricting Event Logging

By default, all PETSc operations are logged. To enable or disable the PETSc logging of individual events,
one uses the commands

PetscLogEventActivate(int event);
PetscLogEventDeactivate(int event);

The event may be either a predefined PETSc event (as listed in the file ${PETSC_DIR}/include/
petsclog.h) or one obtained with PetscLogEventRegister() (as described in Profiling Application
Codes).

PETSc also provides routines that deactivate (or activate) logging for entire components of the library.
Currently, the components that support such logging (de)activation are Mat (matrices), Vec (vectors), KSP
(linear solvers, including KSP and PC), and SNES (nonlinear solvers):

PetscLogEventDeactivateClass(MAT_CLASSID);
PetscLogEventDeactivateClass(KSP_CLASSID); /* includes PC and KSP */
PetscLogEventDeactivateClass(VEC_CLASSID);
PetscLogEventDeactivateClass(SNES_CLASSID);

and

PetscLogEventActivateClass(MAT_CLASSID);
PetscLogEventActivateClass(KSP_CLASSID); /* includes PC and KSP */
PetscLogEventActivateClass(VEC_CLASSID);
PetscLogEventActivateClass(SNES_CLASSID);

Recall that the option -log_all produces extensive profile data, which can be a challenge for PETScView
to handle due to the memory limitations of Tcl/Tk. Thus, one should generally use -log_all when running
programs with a relatively small number of events or when disabling some of the events that occur many
times in a code (e.g., VecSetValues(), MatSetValues()).

3.3.5 Interpreting -log_info Output: Informative Messages

Users can activate the printing of verbose information about algorithms, data structures, etc. to the screen
by using the option -info or by calling PetscInfoAllow(PETSC_TRUE). Such logging, which is used
throughout the PETSc libraries, can aid the user in understanding algorithms and tuning program perfor-
mance. For example, as discussed in Sparse Matrices, -info activates the printing of information about
memory allocation during matrix assembly.

Application programmers can employ this logging as well, by using the routine

PetscInfo(void* obj,char *message,...)

where obj is the PETSc object associated most closely with the logging statement, message. For example,
in the line search Newton methods, we use a statement such as

PetscInfo(snes,"Cubically determined step, lambda %g\n",lambda);

One can selectively turn off informative messages about any of the basic PETSc objects (e.g., Mat, SNES)
with the command

PetscInfoDeactivateClass(int object_classid)

where object_classid is one of MAT_CLASSID, SNES_CLASSID, etc. Messages can be reactivated with
the command

3.3. Profiling 171

PETSc Users Manual, Release 3.14.2

PetscInfoActivateClass(int object_classid)

Such deactivation can be useful when one wishes to view information about higher-level PETSc libraries
(e.g., TS and SNES) without seeing all lower level data as well (e.g., Mat). One can deactivate events at
runtime for matrix and linear solver libraries via -info [no_mat, no_ksp].

3.3.6 Time

PETSc application programmers can access the wall clock time directly with the command

PetscLogDouble time;
PetscTime(&time);CHKERRQ(ierr);

which returns the current time in seconds since the epoch, and is commonly implemented with MPI_Wtime.
A floating point number is returned in order to express fractions of a second. In addition, as discussed in
Profiling Application Codes, PETSc can automatically profile user-defined segments of code.

3.3.7 Saving Output to a File

All output from PETSc programs (including informative messages, profiling information, and convergence
data) can be saved to a file by using the command line option -history [filename]. If no file name
is specified, the output is stored in the file ${HOME}/.petschistory. Note that this option only saves
output printed with the PetscPrintf() and PetscFPrintf() commands, not the standard printf()
and fprintf() statements.

3.3.8 Accurate Profiling and Paging Overheads

One factor that often plays a significant role in profiling a code is paging by the operating system. Generally,
when running a program, only a few pages required to start it are loaded into memory rather than the entire
executable. When the execution proceeds to code segments that are not in memory, a pagefault occurs,
prompting the required pages to be loaded from the disk (a very slow process). This activity distorts the
results significantly. (The paging effects are noticeable in the log files generated by -log_mpe, which is
described in Using -log_mpe with Jumpshot.)

To eliminate the effects of paging when profiling the performance of a program, we have found an effective
procedure is to run the exact same code on a small dummy problem before running it on the actual problem
of interest. We thus ensure that all code required by a solver is loaded into memory during solution of the
small problem. When the code proceeds to the actual (larger) problem of interest, all required pages have
already been loaded into main memory, so that the performance numbers are not distorted.

When this procedure is used in conjunction with the user-defined stages of profiling described in Profiling
Multiple Sections of Code, we can focus easily on the problem of interest. For example, we used this technique
in the program KSP Tutorial ex10 to generate the timings within the listings above In this case, the profiled
code of interest (solving the linear system for the larger problem) occurs within event stages 5 and 6.
Interpreting -log_view Output: Parallel Performance provides details about interpreting such profiling data.

In particular, the macros

PetscPreLoadBegin(PetscBool flag,char* stagename)
PetscPreLoadStage(char *stagename)

and

172 Chapter 3. Additional Information

https://www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/tutorials/ex10.c.html

PETSc Users Manual, Release 3.14.2

PetscPreLoadEnd()

can be used to easily convert a regular PETSc program to one that uses preloading. The command line
options -preload true and -preload false may be used to turn on and off preloading at run time for
PETSc programs that use these macros.

3.4 Hints for Performance Tuning

This chapter provides hints on how to get to achieve best performance with PETSc, particularly on
distributed-memory machines with multiple CPU sockets per node. We focus on machine-related perfor-
mance optimization here; algorithmic aspects like preconditioner selection are not the focus of this section.

3.4.1 Maximizing Memory Bandwidth

Most operations in PETSc deal with large datasets (typically vectors and sparse matrices) and perform
relatively few arithmetic operations for each byte loaded or stored from global memory. Therefore, the
arithmetic intensity expressed as the ratio of floating point operations to the number of bytes loaded and
stored is usually well below unity for typical PETSc operations. On the other hand, modern CPUs are able to
execute on the order of 10 floating point operations for each byte loaded or stored. As a consequence, almost
all PETSc operations are limited by the rate at which data can be loaded or stored (memory bandwidth
limited) rather than by the rate of floating point operations.

This section discusses ways to maximize the memory bandwidth achieved by applications based on PETSc.
Where appropriate, we include benchmark results in order to provide quantitative results on typical perfor-
mance gains one can achieve through parallelization, both on a single compute node and across nodes. In
particular, we start with the answer to the common question of why performance generally does not increase
20-fold with a 20-core CPU.

Memory Bandwidth vs. Processes

Consider the addition of two large vectors, with the result written to a third vector. Because there are no
dependencies across the different entries of each vector, the operation is embarrasingly parallel.

As :numref‘fig_stream_intel‘ shows, the performance gains due to parallelization on different multi- and
many-core CPUs quickly saturates. The reason is that only a fraction of the total number of CPU cores is
required to saturate the memory channels. For example, a dual-socket system equipped with Haswell 12-core
Xeon CPUs achieves more than 80 percent of achievable peak memory bandwidth with only four processes
per socket (8 total), cf. Fig. 3.1. Consequently, running with more than 8 MPI ranks on such a system
will not increase performance substantially. For the same reason, PETSc-based applications usually do not
benefit from hyper-threading.

PETSc provides a simple way to measure memory bandwidth for different numbers of processes via the
target make streams executed from $PETSC_DIR. The output provides an overview of the possible
speedup one can obtain on the given machine (not necessarily a shared memory system). For example, the
following is the most relevant output obtained on a dual-socket system equipped with two six-core-CPUs
with hyperthreading:

np speedup
1 1.0
2 1.58
3 2.19

(continues on next page)

3.4. Hints for Performance Tuning 173

PETSc Users Manual, Release 3.14.2

 1

 10

 100

 1000

 1 10 100

B
a

n
d

w
id

th
 (

G
B

/s
e

c
)

Processes/Threads

STREAM Benchmark Results on INTEL Hardware

E5-2670 v3 (Haswell)
E5-2650 v2 (Ivy Bridge)
E5-2620 (Sandy Bridge)
Xeon Phi 7120 (Knights Corner)
Xeon Phi 7250 (Knights Landing), DDR4
Xeon Phi 7250 (Knights Landing), MCDRAM

Fig. 3.1: Memory bandwidth obtained on Intel hardware (dual socket except KNL) over the number of
processes used. One can get close to peak memory bandwidth with only a few processes.

(continued from previous page)
4 2.42
5 2.63
6 2.69
...
21 3.82
22 3.49
23 3.79
24 3.71
Estimation of possible speedup of MPI programs based on Streams benchmark.
It appears you have 1 node(s)

On this machine, one should expect a speed-up of typical memory bandwidth-bound PETSc applications of
at most 4x when running multiple MPI ranks on the node. Most of the gains are already obtained when
running with only 4-6 ranks. Because a smaller number of MPI ranks usually implies better preconditioners
and better performance for smaller problems, the best performance for PETSc applications may be obtained
with fewer ranks than there are physical CPU cores available.

Following the results from the above run of make streams, we recommend to use additional nodes instead
of placing additional MPI ranks on the nodes. In particular, weak scaling (i.e. constant load per process,
increasing the number of processes) and strong scaling (i.e. constant total work, increasing the number of
processes) studies should keep the number of processes per node constant.

174 Chapter 3. Additional Information

PETSc Users Manual, Release 3.14.2

Non-Uniform Memory Access (NUMA) and Process Placement

CPUs in nodes with more than one CPU socket are internally connected via a high-speed fabric, cf. Fig. 3.2,
to enable data exchange as well as cache coherency. Because main memory on modern systems is connected
via the integrated memory controllers on each CPU, memory is accessed in a non-uniform way: A process
running on one socket has direct access to the memory channels of the respective CPU, whereas requests for
memory attached to a different CPU socket need to go through the high-speed fabric. Consequently, best
aggregate memory bandwidth on the node is obtained when the memory controllers on each CPU are fully
saturated. However, full saturation of memory channels is only possible if the data is distributed across the
different memory channels.

CPU
socket

CPU
socket Interconnect

Main Memory Main Memory

Fig. 3.2: Schematic of a two-socket NUMA system. Processes should be spread across both CPUs to obtain
full bandwidth.

Data in memory on modern machines is allocated by the operating system based on a first-touch policy. That
is, memory is not allocated at the point of issuing malloc(), but at the point when the respective memory
segment is actually touched (read or write). Upon first-touch, memory is allocated on the memory channel
associated with the respective CPU the process is running on. Only if all memory on the respective CPU is
already in use (either allocated or as IO cache), memory available through other sockets is considered.

Maximum memory bandwidth can be achieved by ensuring that processes are spread over all sockets in the
respective node. For example, the recommended placement of a 8-way parallel run on a four-socket machine
is to assign two processes to each CPU socket. To do so, one needs to know the enumeration of cores and pass
the requested information to mpirun. Consider the hardware topology information returned by lstopo
(part of the hwloc package) for the following two-socket machine, in which each CPU consists of six cores
and supports hyperthreading:

Machine (126GB total)
NUMANode L#0 (P#0 63GB)

Package L#0 + L3 L#0 (15MB)
L2 L#0 (256KB) + L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0

PU L#0 (P#0)
PU L#1 (P#12)

L2 L#1 (256KB) + L1d L#1 (32KB) + L1i L#1 (32KB) + Core L#1
PU L#2 (P#1)
PU L#3 (P#13)

L2 L#2 (256KB) + L1d L#2 (32KB) + L1i L#2 (32KB) + Core L#2
PU L#4 (P#2)
PU L#5 (P#14)

L2 L#3 (256KB) + L1d L#3 (32KB) + L1i L#3 (32KB) + Core L#3
PU L#6 (P#3)
PU L#7 (P#15)

L2 L#4 (256KB) + L1d L#4 (32KB) + L1i L#4 (32KB) + Core L#4
PU L#8 (P#4)
PU L#9 (P#16)

L2 L#5 (256KB) + L1d L#5 (32KB) + L1i L#5 (32KB) + Core L#5
PU L#10 (P#5)
PU L#11 (P#17)

NUMANode L#1 (P#1 63GB)
Package L#1 + L3 L#1 (15MB)

(continues on next page)

3.4. Hints for Performance Tuning 175

PETSc Users Manual, Release 3.14.2

(continued from previous page)
L2 L#6 (256KB) + L1d L#6 (32KB) + L1i L#6 (32KB) + Core L#6

PU L#12 (P#6)
PU L#13 (P#18)

L2 L#7 (256KB) + L1d L#7 (32KB) + L1i L#7 (32KB) + Core L#7
PU L#14 (P#7)
PU L#15 (P#19)

L2 L#8 (256KB) + L1d L#8 (32KB) + L1i L#8 (32KB) + Core L#8
PU L#16 (P#8)
PU L#17 (P#20)

L2 L#9 (256KB) + L1d L#9 (32KB) + L1i L#9 (32KB) + Core L#9
PU L#18 (P#9)
PU L#19 (P#21)

L2 L#10 (256KB) + L1d L#10 (32KB) + L1i L#10 (32KB) + Core L#10
PU L#20 (P#10)
PU L#21 (P#22)

L2 L#11 (256KB) + L1d L#11 (32KB) + L1i L#11 (32KB) + Core L#11
PU L#22 (P#11)
PU L#23 (P#23)

The relevant physical processor IDs are shown in parentheses prefixed by P#. Here, IDs 0 and 12 share the
same physical core and have a common L2 cache. IDs 0, 12, 1, 13, 2, 14, 3, 15, 4, 16, 5, 17 share the same
socket and have a common L3 cache.

A good placement for a run with six processes is to locate three processes on the first socket and three
processes on the second socket. Unfortunately, mechanisms for process placement vary across MPI imple-
mentations, so make sure to consult the manual of your MPI implementation. The following discussion is
based on how processor placement is done with MPICH and OpenMPI, where one needs to pass --bind-to
core --map-by socket to mpirun:

$> mpirun -n 6 --bind-to core --map-by socket ./stream
process 0 binding: 100000000000100000000000
process 1 binding: 000000100000000000100000
process 2 binding: 010000000000010000000000
process 3 binding: 000000010000000000010000
process 4 binding: 001000000000001000000000
process 5 binding: 000000001000000000001000
Triad: 45403.1949 Rate (MB/s)

In this configuration, process 0 is bound to the first physical core on the first socket (with IDs 0 and 12),
process 1 is bound to the first core on the second socket (IDs 6 and 18), and similarly for the remaining
processes. The achieved bandwidth of 45 GB/sec is close to the practical peak of about 50 GB/sec available
on the machine. If, however, all MPI processes are located on the same socket, memory bandwidth drops
significantly:

$> mpirun -n 6 --bind-to core --map-by core ./stream
process 0 binding: 100000000000100000000000
process 1 binding: 010000000000010000000000
process 2 binding: 001000000000001000000000
process 3 binding: 000100000000000100000000
process 4 binding: 000010000000000010000000
process 5 binding: 000001000000000001000000
Triad: 25510.7507 Rate (MB/s)

All processes are now mapped to cores on the same socket. As a result, only the first memory channel is
fully saturated at 25.5 GB/sec.

176 Chapter 3. Additional Information

PETSc Users Manual, Release 3.14.2

One must not assume that mpirun uses good defaults. To demonstrate, compare the full output of make
streams from Memory Bandwidth vs. Processes on the left with the results on the right obtained by
passing --bind-to core --map-by socket:

$> make streams
np speedup
1 1.0
2 1.58
3 2.19
4 2.42
5 2.63
6 2.69
7 2.31
8 2.42
9 2.37
10 2.65
11 2.3
12 2.53
13 2.43
14 2.63
15 2.74
16 2.7
17 3.28
18 3.66
19 3.95
20 3.07
21 3.82
22 3.49
23 3.79
24 3.71

$> make streams MPI_BINDING="--bind-to core --map-by socket"
np speedup
1 1.0
2 1.59
3 2.66
4 3.5
5 3.56
6 4.23
7 3.95
8 4.39
9 4.09
10 4.46
11 4.15
12 4.42
13 3.71
14 3.83
15 4.08
16 4.22
17 4.18
18 4.31
19 4.22
20 4.28
21 4.25
22 4.23
23 4.28

(continues on next page)

3.4. Hints for Performance Tuning 177

PETSc Users Manual, Release 3.14.2

(continued from previous page)
24 4.22

For the non-optimized version on the left, the speedup obtained when using any number of processes
between 3 and 13 is essentially constant up to fluctuations, indicating that all processes were by default
executed on the same socket. Only with 14 or more processes, the speedup number increases again. In
contrast, the results of make streams with proper processor placement shown on the right resulted in
slightly higher overall parallel speedup (identical baselines), in smaller performance fluctuations, and more
than 90 percent of peak bandwidth with only six processes.

Machines with job submission systems such as SLURM usually provide similar mechanisms for processor
placements through options specified in job submission scripts. Please consult the respective manuals.

Additional Process Placement Considerations and Details

For a typical, memory bandwidth-limited PETSc application, the primary consideration in placing MPI pro-
cesses is ensuring that processes are evenly distributed among sockets, and hence using all available memory
channels. Increasingly complex processor designs and cache hierarchies, however, mean that performance
may also be sensitive to how processes are bound to the resources within each socket. Performance on the
two processor machine in the preceding example may be relatively insensitive to such placement decisions,
because one L3 cache is shared by all cores within a NUMA domain, and each core has its own L2 and L1
caches. However, processors that are less “flat”, with more complex hierarchies, may be more sensitive. In
many AMD Opterons or the second-generation “Knights Landing” Intel Xeon Phi, for instance, L2 caches
are shared between two cores. On these processors, placing consecutive MPI ranks on cores that share the
same L2 cache may benefit performance if the two ranks communicate frequently with each other, because
the latency between cores sharing an L2 cache may be roughly half that of two cores not sharing one. There
may be benefit, however, in placing consecutive ranks on cores that do not share an L2 cache, because (if
there are fewer MPI ranks than cores) this increases the total L2 cache capacity and bandwidth available to
the application. There is a trade-off to be considered between placing processes close together (in terms of
shared resources) to optimize for efficient communication and synchronization vs. farther apart to maximize
available resources (memory channels, caches, I/O channels, etc.), and the best strategy will depend on the
application and the software and hardware stack.

Different process placement strategies can affect performance at least as much as some commonly explored
settings, such as compiler optimization levels. Unfortunately, exploration of this space is complicated by
two factors: First, processor and core numberings may be completely arbitrary, changing with BIOS version,
etc., and second—as already noted—there is no standard mechanism used by MPI implementations (or job
schedulers) to specify process affinity. To overcome the first issue, we recommend using the lstopo utility
of the Portable Hardware Locality (hwloc) software package (which can be installed by configuring PETSc
with –download-hwloc) to understand the processor topology of your machine. We cannot fully address
the second issue—consult the documenation for your MPI implementation and/or job scheduler—but we
offer some general observations on understanding placement options:

• An MPI implementation may support a notion of domains in which a process may be pinned. A domain
may simply correspond to a single core; however, the MPI implementation may allow a deal of flexibility
in specifying domains that encompass multiple cores, span sockets, etc. Some implementations, such
as Intel MPI, provide means to specify whether domains should be “compact”—composed of cores
sharing resources such as caches—or “scatter”-ed, with little resource sharing (possibly even spanning
sockets).

178 Chapter 3. Additional Information

PETSc Users Manual, Release 3.14.2

• Separate from the specification of domains, MPI implementations often support different orderings in
which MPI ranks should be bound to these domains. Intel MPI, for instance, supports “compact”
ordering to place consecutive ranks close in terms of shared resources, “scatter” to place them far
apart, and “bunch” to map proportionally to sockets while placing ranks as close together as possible
within the sockets.

• An MPI implemenation that supports process pinning should offer some way to view the rank assign-
ments. Use this output in conjunction with the topology obtained via lstopo or a similar tool to
determine if the placements correspond to something you believe is reasonable for your application.
Do not assume that the MPI implementation is doing something sensible by default!

3.4.2 Performance Pitfalls and Advice

This section looks into a potpourri of performance pitfalls encountered by users in the past. Many of these
pitfalls require a deeper understanding of the system and experience to detect. The purpose of this section
is to summarize and share our experience so that these pitfalls can be avoided in the future.

Debug vs. Optimized Builds

PETSc’s ./configure defaults to building PETSc with debug mode enabled. Any code development
should be done in this mode, because it provides handy debugging facilities such as accurate stack traces,
memory leak checks, or memory corruption checks. Note that PETSc has no reliable way of knowing whether
a particular run is a production or debug run. In the case that a user requests profiling information via
-log_view, a debug build of PETSc issues the following warning:

##
#
WARNING!!!
#
This code was compiled with a debugging option,
To get timing results run ./configure
using --with-debugging=no, the performance will
be generally two or three times faster.
#
##

Conversely, one way of checking whether a particular build of PETSc has debugging enabled is to inspect
the output of -log_view.

Debug mode will generally be most useful for code development if appropriate compiler options are set to
faciliate debugging. The compiler should be instructed to generate binaries with debug symbols (command
line option -g for most compilers), and the optimization level chosen should either completely disable
optimizations (-O0 for most compilers) or enable only optimizations that do not interfere with debugging
(GCC, for instance, supports a -Og optimization level that does this).

Only once the new code is thoroughly tested and ready for production, one should disable debugging facilities
by passing --with-debugging=no to

./configure. One should also ensure that an appropriate compiler optimization level is set. Note that
some compilers (e.g., Intel) default to fairly comprehensive optimization levels, while others (e.g., GCC)
default to no optimization at all. The best optimization flags will depend on your code, the compiler, and
the target architecture, but we offer a few guidelines for finding those that will offer the best performance:

• Most compilers have a number of optimization levels (with level n usually specified via -On) that pro-
vide a quick way to enable sets of several optimization flags. We suggest trying the higher optimization
levels (the highest level is not guaranteed to produce the fastest executable, so some experimentation

3.4. Hints for Performance Tuning 179

PETSc Users Manual, Release 3.14.2

may be merited). With most recent processors now supporting some form of SIMD or vector instruc-
tions, it is important to choose a level that enables the compiler’s auto-vectorizer; many compilers do
not enable auto-vectorization at lower optimization levels (e.g., GCC does not enable it below -O3 and
the Intel compiler does not enable it below -O2).

• For processors supporting newer vector instruction sets, such as Intel AVX2 and AVX-512, it is also
important to direct the compiler to generate code that targets these processors (.e.g., -march=knl to
generate AVX-512 binaries targeting the Intel “Knights Landing” Xeon Phi processor); otherwise, the
executables built will not utilize the newer instructions sets and will not take advantage of the vector
processing units.

• Beyond choosing the optimization levels, some value-unsafe optimizations (such as using reciprocals
of values instead of dividing by those values, or allowing re-association of operands in a series of
calculations) for floating point calculations may yield significant performance gains. Compilers often
provide flags (e.g., -ffast-math in GCC) to enable a set of these optimizations, and they may be
turned on when using options for very aggressive optimization (-fast or -Ofast in many compilers).
These are worth exploring to maximize performance, but, if employed, it important to verify that these
do not cause erroneous results with your code, since calculations may violate the IEEE standard for
floating-point arithmetic.

Profiling

Users should not spend time optimizing a code until after having determined where it spends the bulk of its
time on realistically sized problems. As discussed in detail in Profiling, the PETSc routines automatically
log performance data if certain runtime options are specified.

To obtain a summary of where and how much time is spent in different sections of the code, use one of the
following options:

• Run the code with the option -log_view to print a performance summary for various phases of the
code.

• Run the code with the option -log_mpe [logfilename], which creates a logfile of events suitable
for viewing with Jumpshot (part of MPICH).

Then, focus on the sections where most of the time is spent. If you provided your own callback routines,
e.g. for residual evaluations, search the profiling output for routines such as SNESFunctionEval or SNES-
JacobianEval. If their relative time is significant (say, more than 30 percent), consider optimizing these
routines first. Generic instructions on how to optimize your callback functions are difficult; you may start
by reading performance optimization guides for your system’s hardware.

Aggregation

Performing operations on chunks of data rather than a single element at a time can significantly enhance
performance because of cache reuse or lower data motion. Typical examples are:

• Insert several (many) elements of a matrix or vector at once, rather than looping and inserting a single
value at a time. In order to access elements in of vector repeatedly, employ VecGetArray() to allow
direct manipulation of the vector elements.

• When possible, use VecMDot() rather than a series of calls to VecDot().

• If you require a sequence of matrix-vector products with the same matrix, consider packing your vectors
into a single matrix and use matrix-matrix multiplications.

• Users should employ a reasonable number of PetscMalloc() calls in their codes. Hundreds or
thousands of memory allocations may be appropriate; however, if tens of thousands are being used,
then reducing the number of PetscMalloc() calls may be warranted. For example, reusing space

180 Chapter 3. Additional Information

PETSc Users Manual, Release 3.14.2

or allocating large chunks and dividing it into pieces can produce a significant savings in allocation
overhead. Data Structure Reuse gives details.

Aggressive aggregation of data may result in inflexible datastructures and code that is hard to maintain. We
advise users to keep these competing goals in mind and not blindly optimize for performance only.

Memory Allocation for Sparse Matrix Assembly

Since the process of dynamic memory allocation for sparse matrices is inherently very expensive, accurate
preallocation of memory is crucial for efficient sparse matrix assembly. One should use the matrix cre-
ation routines for particular data structures, such as MatCreateSeqAIJ() and MatCreateAIJ() for
compressed, sparse row formats, instead of the generic MatCreate() routine. For problems with multiple
degrees of freedom per node, the block, compressed, sparse row formats, created by MatCreateSeqBAIJ()
and MatCreateBAIJ(), can significantly enhance performance. Sparse Matrices includes extensive details
and examples regarding preallocation.

Memory Allocation for Sparse Matrix Factorization

When symbolically factoring an AIJ matrix, PETSc has to guess how much fill there will be. Careful use of
the fill parameter in the MatILUInfo structure when calling MatLUFactorSymbolic() or MatILUFac-
torSymbolic() can reduce greatly the number of mallocs and copies required, and thus greatly improve
the performance of the factorization. One way to determine a good value for the fill parameter is to run a
program with the option -info. The symbolic factorization phase will then print information such as

Info:MatILUFactorSymbolic_AIJ:Realloc 12 Fill ratio:given 1 needed 2.16423

This indicates that the user should have used a fill estimate factor of about 2.17 (instead of 1) to prevent
the 12 required mallocs and copies. The command line option

-pc_ilu_fill 2.17

will cause PETSc to preallocate the correct amount of space for incomplete (ILU) factorization. The corre-
sponding option for direct (LU) factorization is -pc_factor_fill <fill_amount>.

Detecting Memory Allocation Problems

PETSc provides a number of tools to aid in detection of problems with memory allocation, including leaks
and use of uninitialized space. We briefly describe these below.

• The PETSc memory allocation (which collects statistics and performs error checking), is employed
by default for codes compiled in a debug-mode (configured with --with-debugging=1). PETSc
memory allocation can be activated for optimized-mode (configured with --with-debugging=0)
using the option -malloc. The option -malloc=0 forces the use of conventional memory allocation
when debugging is enabled. When running timing tests, one should build libraries in optimized mode.

• When the PETSc memory allocation routines are used, the option -malloc_dump will print a list of
unfreed memory at the conclusion of a program. If all memory has been freed, only a message stating the
maximum allocated space will be printed. However, if some memory remains unfreed, this information
will be printed. Note that the option -malloc_dumpmerely activates a call to PetscMallocDump()
during PetscFinalize() the user can also call PetscMallocDump() elsewhere in a program.

• Another useful option for use with PETSc memory allocation routines is -malloc_view, which acti-
vates logging of all calls to malloc and reports memory usage, including all Fortran arrays. This option

3.4. Hints for Performance Tuning 181

PETSc Users Manual, Release 3.14.2

provides a more complete picture than -malloc_dump for codes that employ Fortran with hard-
wired arrays. The option -malloc_view activates logging by calling PetscMallocViewSet() in
PetscInitialize() and then prints the log by calling PetscMallocView() in PetscFinal-
ize(). The user can also call these routines elsewhere in a program. When finer granularity is desired,
the user should call PetscMallocGetCurrentUsage() and PetscMallocGetMaximumUsage()
for memory allocated by PETSc, or PetscMemoryGetCurrentUsage() and PetscMemoryGet-
MaximumUsage() for the total memory used by the program. Note that PetscMemorySetGet-
MaximumUsage() must be called before PetscMemoryGetMaximumUsage() (typically at the be-
ginning of the program).

Data Structure Reuse

Data structures should be reused whenever possible. For example, if a code often creates new matrices or
vectors, there often may be a way to reuse some of them. Very significant performance improvements can be
achieved by reusing matrix data structures with the same nonzero pattern. If a code creates thousands of
matrix or vector objects, performance will be degraded. For example, when solving a nonlinear problem or
timestepping, reusing the matrices and their nonzero structure for many steps when appropriate can make
the code run significantly faster.

A simple technique for saving work vectors, matrices, etc. is employing a user-defined context. In C and
C++ such a context is merely a structure in which various objects can be stashed; in Fortran a user context
can be an integer array that contains both parameters and pointers to PETSc objects. See SNES Tutorial
ex5 and SNES Tutorial ex5f for examples of user-defined application contexts in C and Fortran, respectively.

Numerical Experiments

PETSc users should run a variety of tests. For example, there are a large number of options for the linear and
nonlinear equation solvers in PETSc, and different choices can make a very big difference in convergence rates
and execution times. PETSc employs defaults that are generally reasonable for a wide range of problems,
but clearly these defaults cannot be best for all cases. Users should experiment with many combinations to
determine what is best for a given problem and customize the solvers accordingly.

• Use the options -snes_view, -ksp_view, etc. (or the routines KSPView(), SNESView(), etc.)
to view the options that have been used for a particular solver.

• Run the code with the option -help for a list of the available runtime commands.

• Use the option -info to print details about the solvers’ operation.

• Use the PETSc monitoring discussed in Profiling to evaluate the performance of various numerical
methods.

Tips for Efficient Use of Linear Solvers

As discussed in KSP: Linear System Solvers, the default linear solvers are

• uniprocess: GMRES(30) with ILU(0) preconditioning

• multiprocess: GMRES(30) with block Jacobi preconditioning, where there is 1 block per process, and
each block is solved with ILU(0)

One should experiment to determine alternatives that may be better for various applications. Recall that
one can specify the KSP methods and preconditioners at runtime via the options:

-ksp_type <ksp_name> -pc_type <pc_name>

182 Chapter 3. Additional Information

https://www.mcs.anl.gov/petsc/petsc-current/src/snes/tutorials/ex5.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/snes/tutorials/ex5.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/snes/tutorials/ex5f.F90.html

PETSc Users Manual, Release 3.14.2

One can also specify a variety of runtime customizations for the solvers, as discussed throughout the manual.

In particular, note that the default restart parameter for GMRES is 30, which may be too small for some
large-scale problems. One can alter this parameter with the option -ksp_gmres_restar <restart>
or by calling KSPGMRESSetRestart(). Krylov Methods gives information on setting alternative GMRES
orthogonalization routines, which may provide much better parallel performance.

For elliptic problems one often obtains good performance and scalability with multigrid solvers. Consult
Algebraic Multigrid (AMG) Preconditioners for available options. Our experience is that GAMG works
particularly well for elasticity problems, whereas hypre does well for scalar problems.

System-Related Problems

The performance of a code can be affected by a variety of factors, including the cache behavior, other users
on the machine, etc. Below we briefly describe some common problems and possibilities for overcoming
them.

• Problem too large for physical memory size: When timing a program, one should always leave
at least a ten percent margin between the total memory a process is using and the physical size of
the machine’s memory. One way to estimate the amount of memory used by given process is with the
UNIX getrusage system routine. Also, the PETSc option -log_view prints the amount of memory
used by the basic PETSc objects, thus providing a lower bound on the memory used. Another useful
option is -malloc_view which reports all memory, including any Fortran arrays in an application
code.

• Effects of other users: If other users are running jobs on the same physical processor nodes on which
a program is being profiled, the timing results are essentially meaningless.

• Overhead of timing routines on certain machines: On certain machines, even calling the system
clock in order to time routines is slow; this skews all of the flop rates and timing results. The file
$PETSC_DIR/src/benchmarks/PetscTime.c (source) contains a simple test problem that will
approximate the amount of time required to get the current time in a running program. On good
systems it will on the order of 10−6 seconds or less.

• Problem too large for good cache performance: Certain machines with lower memory band-
widths (slow memory access) attempt to compensate by having a very large cache. Thus, if a significant
portion of an application fits within the cache, the program will achieve very good performance; if the
code is too large, the performance can degrade markedly. To analyze whether this situation affects a
particular code, one can try plotting the total flop rate as a function of problem size. If the flop rate
decreases rapidly at some point, then the problem may likely be too large for the cache size.

• Inconsistent timings: Inconsistent timings are likely due to other users on the machine, thrashing
(using more virtual memory than available physical memory), or paging in of the initial executable.
Accurate Profiling and Paging Overheads provides information on overcoming paging overhead when
profiling a code. We have found on all systems that if you follow all the advise above your timings will
be consistent within a variation of less than five percent.

3.4. Hints for Performance Tuning 183

https://www.mcs.anl.gov/petsc/petsc-current/src/benchmarks/PetscTime.c.html

PETSc Users Manual, Release 3.14.2

3.5 Other PETSc Features

3.5.1 PETSc on a process subset

Users who wish to employ PETSc routines on only a subset of processes within a larger parallel job, or
who wish to use a “master” process to coordinate the work of “slave” PETSc processes, should specify an
alternative communicator for PETSC_COMM_WORLD by directly setting its value, for example to an existing
MPI_COMM_WORLD,

PETSC_COMM_WORLD=MPI_COMM_WORLD; /* To use an existing MPI_COMM_WORLD */

before calling PetscInitialize(), but, obviously, after calling MPI_Init().

3.5.2 Runtime Options

Allowing the user to modify parameters and options easily at runtime is very desirable for many applications.
PETSc provides a simple mechanism to enable such customization. To print a list of available options for a
given program, simply specify the option -help at runtime, e.g.,

mpiexec -n 1 ./ex1 -help

Note that all runtime options correspond to particular PETSc routines that can be explicitly called from
within a program to set compile-time defaults. For many applications it is natural to use a combination of
compile-time and runtime choices. For example, when solving a linear system, one could explicitly specify
use of the Krylov subspace technique BiCGStab by calling

KSPSetType(ksp,KSPBCGS);

One could then override this choice at runtime with the option

-ksp_type tfqmr

to select the Transpose-Free QMR algorithm. (See KSP: Linear System Solvers for details.)

The remainder of this section discusses details of runtime options.

The Options Database

Each PETSc process maintains a database of option names and values (stored as text strings). This database
is generated with the command PetscInitialize(), which is listed below in its C/C++ and Fortran
variants, respectively:

PetscInitialize(int *argc,char ***args,const char *file,const char *help); /* C */

call PetscInitialize(character file,integer ierr) ! Fortran

The arguments argc and args (in the C/C++ version only) are the addresses of usual command line
arguments, while the file is a name of a file that can contain additional options. By default this file is
called .petscrc in the user’s home directory. The user can also specify options via the environmental
variable PETSC_OPTIONS. The options are processed in the following order:

1. file

2. environmental variable

184 Chapter 3. Additional Information

PETSc Users Manual, Release 3.14.2

3. command line

Thus, the command line options supersede the environmental variable options, which in turn supersede the
options file.

The file format for specifying options is

-optionname possible_value
-anotheroptionname possible_value
...

All of the option names must begin with a dash (-) and have no intervening spaces. Note that the op-
tion values cannot have intervening spaces either, and tab characters cannot be used between the option
names and values. The user can employ any naming convention. For uniformity throughout PETSc, we
employ the format -[prefix_]package_option (for instance, -ksp_type, -mat_view ::info, or
-mg_levels_ksp_type).

Users can specify an alias for any option name (to avoid typing the sometimes lengthy default name) by
adding an alias to the .petscrc file in the format

alias -newname -oldname

For example,

alias -kspt -ksp_type
alias -sd -start_in_debugger

Comments can be placed in the .petscrc file by using # in the first column of a line.

Options Prefixes

Options prefixes allow specific objects to be controlled from the options database. For instance, PCMG
gives prefixes to its nested KSP objects; one may control the coarse grid solver by adding the mg_coarse
prefix, for example -mg_coarse_ksp_type preonly. One may also use KSPSetOptionsPre-
fix(),DMSetOptionsPrefix() , SNESSetOptionsPrefix(), TSSetOptionsPrefix(), and simi-
lar functions to assign custom prefixes, useful for applications with multiple or nested solvers.

User-Defined PetscOptions

Any subroutine in a PETSc program can add entries to the database with the command

PetscOptionsSetValue(PetscOptions options,char *name,char *value);

though this is rarely done. To locate options in the database, one should use the commands

PetscOptionsHasName(PetscOptions options,char *pre,char *name,PetscBool *flg);
PetscOptionsGetInt(PetscOptions options,char *pre,char *name,PetscInt *value,
↪→PetscBool *flg);
PetscOptionsGetReal(PetscOptions options,char *pre,char *name,PetscReal *value,
↪→PetscBool *flg);
PetscOptionsGetString(PetscOptions options,char *pre,char *name,char *value,int␣
↪→maxlen,PetscBool *flg);
PetscOptionsGetStringArray(PetscOptions options,char *pre,char *name,char **values,
↪→PetscInt *nmax,PetscBool *flg);

(continues on next page)

3.5. Other PETSc Features 185

PETSc Users Manual, Release 3.14.2

(continued from previous page)
PetscOptionsGetIntArray(PetscOptions options,char *pre,char *name,int *value,PetscInt␣
↪→*nmax,PetscBool *flg);
PetscOptionsGetRealArray(PetscOptions options,char *pre,char *name,PetscReal *value,␣
↪→PetscInt *nmax,PetscBool *flg);

All of these routines set flg=PETSC_TRUE if the corresponding option was found, flg=PETSC_FALSE
if it was not found. The optional argument pre indicates that the true name of the option is the given
name (with the dash “-” removed) prepended by the prefix pre. Usually pre should be set to NULL
(or PETSC_NULL_CHARACTER for Fortran); its purpose is to allow someone to rename all the options in
a package without knowing the names of the individual options. For example, when using block Jacobi
preconditioning, the KSP and PC methods used on the individual blocks can be controlled via the options
-sub_ksp_type and -sub_pc_type.

Keeping Track of Options

One useful means of keeping track of user-specified runtime options is use of -options_view, which prints
to stdout during PetscFinalize() a table of all runtime options that the user has specified. A related
option is -options_left, which prints the options table and indicates any options that have not been
requested upon a call to PetscFinalize(). This feature is useful to check whether an option has been
activated for a particular PETSc object (such as a solver or matrix format), or whether an option name may
have been accidentally misspelled.

3.5.3 Viewers: Looking at PETSc Objects

PETSc employs a consistent scheme for examining, printing, and saving objects through commands of the
form

XXXView(XXX obj,PetscViewer viewer);

Here obj is any PETSc object of type XXX, where XXX is Mat, Vec, SNES, etc. There are several predefined
viewers.

• Passing in a zero (0) for the viewer causes the object to be printed to the screen; this is useful when
viewing an object in a debugger but should be avoided in source code.

• PETSC_VIEWER_STDOUT_SELF and PETSC_VIEWER_STDOUT_WORLD causes the object to be
printed to the screen.

• PETSC_VIEWER_DRAW_SELF PETSC_VIEWER_DRAW_WORLD causes the object to be drawn in a de-
fault X window.

• Passing in a viewer obtained by PetscViewerDrawOpen() causes the object to be displayed graph-
ically. See Graphics for more on PETSc’s graphics support.

• To save an object to a file in ASCII format, the user creates the viewer object with the command
PetscViewerASCIIOpen(MPI_Comm comm, char* file, PetscViewer *viewer). This
object is analogous to PETSC_VIEWER_STDOUT_SELF (for a communicator of MPI_COMM_SELF) and
PETSC_VIEWER_STDOUT_WORLD (for a parallel communicator).

• To save an object to a file in binary format, the user creates the viewer object with the command
PetscViewerBinaryOpen(MPI_Comm comm,char* file,PetscViewerBinaryType type,
PetscViewer *viewer). Details of binary I/O are discussed below.

186 Chapter 3. Additional Information

PETSc Users Manual, Release 3.14.2

• Vector and matrix objects can be passed to a running MATLAB process with a viewer created
by PetscViewerSocketOpen(MPI_Comm comm,char *machine,int port,PetscViewer
*viewer). For more, see Sending Data to an Interactive MATLAB Session.

The user can control the format of ASCII printed objects with viewers created by PetscViewerASCI-
IOpen() by calling

PetscViewerPushFormat(PetscViewer viewer,PetscViewerFormat format);

Formats include PETSC_VIEWER_DEFAULT, PETSC_VIEWER_ASCII_MATLAB, and
PETSC_VIEWER_ASCII_IMPL. The implementation-specific format, PETSC_VIEWER_ASCII_IMPL,
displays the object in the most natural way for a particular implementation.

The routines

PetscViewerPushFormat(PetscViewer viewer,PetscViewerFormat format);
PetscViewerPopFormat(PetscViewer viewer);

allow one to temporarily change the format of a viewer.

As discussed above, one can output PETSc objects in binary format by first opening a binary viewer with
PetscViewerBinaryOpen() and then using MatView(), VecView(), etc. The corresponding routines
for input of a binary object have the form XXXLoad(). In particular, matrix and vector binary input is
handled by the following routines:

MatLoad(PetscViewer viewer,MatType outtype,Mat *newmat);
VecLoad(PetscViewer viewer,VecType outtype,Vec *newvec);

These routines generate parallel matrices and vectors if the viewer’s communicator has more than one process.
The particular matrix and vector formats are determined from the options database; see the manual pages
for details.

One can provide additional information about matrix data for matrices stored on disk by providing an
optional file matrixfilename.info, where matrixfilename is the name of the file containing the
matrix. The format of the optional file is the same as the .petscrc file and can (currently) contain the
following:

-matload_block_size <bs>

The block size indicates the size of blocks to use if the matrix is read into a block oriented data structure
(for example, MATMPIBAIJ). The diagonal information s1,s2,s3,... indicates which (block) diagonals
in the matrix have nonzero values.

Viewing From Options

Command-line options provide a particularly convenient way to view PETSc objects. All options of the form
-xxx_view accept colon(:)-separated compound arguments which specify a viewer type, format, and/or
destination (e.g. file name or socket) if appropriate. For example, to quickly export a binary file contain-
ing a matrix, one may use -mat_view binary:matrix.out, or to output to a MATLAB-compatible
ASCII file, one may use -mat_view ascii:matrix.m:ascii_matlab. See the PetscOptions-
GetViewer() man page for full details, as well as the XXXViewFromOptions() man pages (for instance,
PetscDrawSetFromOptions()) for many other convenient command-line options.

3.5. Other PETSc Features 187

PETSc Users Manual, Release 3.14.2

Using Viewers to Check Load Imbalance

The PetscViewer format PETSC_VIEWER_LOAD_BALANCE will cause certain objects to display simple mea-
sures of their imbalance. For example

-n 4 ./ex32 -ksp_view_mat ::load_balance

will display

Nonzeros: Min 162 avg 168 max 174

indicating that one process has 162 nonzero entries in the matrix, the average number of nonzeros per process
is 168 and the maximum number of nonzeros is 174. Similar for vectors one can see the load balancing with,
for example,

-n 4 ./ex32 -ksp_view_rhs ::load_balance

The measurements of load balancing can also be done within the program with calls to the appropriate
object viewer with the viewer format PETSC_VIEWER_LOAD_BALANCE.

3.5.4 Using SAWs with PETSc

The Scientific Application Web server, SAWs8, allows one to monitor running PETSc applications from a
browser. ./configure PETSc with the additional option --download-saws. Options to use SAWs
include

• -saws_options - allows setting values in the PETSc options database via the browser (works only
on one process).

• -stack_view saws - allows monitoring the current stack frame that PETSc is in; refresh to see the
new location.

• -snes_monitor_saws, -ksp_monitor_saws - monitor the solvers’ iterations from the web
browser.

For each of these you need to point your browser to http://hostname:8080, for example http://
localhost:8080. Options that control behavior of SAWs include

• -saws_log filename - log all SAWs actions in a file.

• -saws_https certfile - use HTTPS instead of HTTP with a certificate.

• -saws_port_auto_select - have SAWs pick a port number instead of using 8080.

• -saws_port port - use port instead of 8080.

• -saws_root rootdirectory - local directory to which the SAWs browser will have read access.

• -saws_local - use the local file system to obtain the SAWS javascript files (they much be in
rootdirectory/js).

Also see the manual pages for PetscSAWsBlock, PetscObjectSAWsTakeAccess, PetscObject-
SAWsGrantAccess, PetscObjectSAWsSetBlock, PetscStackSAWsGrantAccess PetscStack-
SAWsTakeAccess, KSPMonitorSAWs, and SNESMonitorSAWs.

8 Saws wiki on Bitbucket

188 Chapter 3. Additional Information

https://bitbucket.org/saws/saws/wiki/Home

PETSc Users Manual, Release 3.14.2

3.5.5 Debugging

PETSc programs may be debugged using one of the two options below.

• -start_in_debugger [noxterm,dbx,xxgdb,xdb,xldb,lldb] [-display name] - start all
processes in debugger

• -on_error_attach_debugger [noxterm,dbx,xxgdb,xdb,xldb,lldb] [-display name]
- start debugger only on encountering an error

Note that, in general, debugging MPI programs cannot be done in the usual manner of starting the pro-
gramming in the debugger (because then it cannot set up the MPI communication and remote processes).

By default the GNU debugger gdb is used when -start_in_debugger or -
on_error_attach_debugger is specified. To employ either xxgdb or the common UNIX debugger
dbx, one uses command line options as indicated above. On HP-UX machines the debugger xdb should
be used instead of dbx; on RS/6000 machines the xldb debugger is supported as well. On OS X systems
with XCode tools, lldb is available. By default, the debugger will be started in a new xterm (to enable
running separate debuggers on each process), unless the option noxterm is used. In order to handle the
MPI startup phase, the debugger command cont should be used to continue execution of the program
within the debugger. Rerunning the program through the debugger requires terminating the first job and
restarting the processor(s); the usual run option in the debugger will not correctly handle the MPI startup
and should not be used. Not all debuggers work on all machines, the user may have to experiment to find
one that works correctly.

You can select a subset of the processes to be debugged (the rest just run without the debugger) with the
option

-debugger_ranks rank1,rank2,...

where you simply list the ranks you want the debugger to run with.

3.5.6 Error Handling

Errors are handled through the routine PetscError(). This routine checks a stack of error handlers and
calls the one on the top. If the stack is empty, it selects PetscTraceBackErrorHandler(), which tries
to print a traceback. A new error handler can be put on the stack with

PetscPushErrorHandler(PetscErrorCode (*HandlerFunction)(int line,char *dir,char *file,
↪→char *message,int number,void*),void *HandlerContext)

The arguments to HandlerFunction() are the line number where the error occurred, the file in
which the error was detected, the corresponding directory, the error message, the error integer, and the
HandlerContext. The routine

PetscPopErrorHandler()

removes the last error handler and discards it.

PETSc provides two additional error handlers besides PetscTraceBackErrorHandler():

PetscAbortErrorHandler()
PetscAttachErrorHandler()

The function PetscAbortErrorHandler() calls abort on encountering an error, while PetscAt-
tachErrorHandler() attaches a debugger to the running process if an error is detected. At runtime,

3.5. Other PETSc Features 189

PETSc Users Manual, Release 3.14.2

these error handlers can be set with the options -on_error_abort or -on_error_attach_debugger
[noxterm, dbx, xxgdb, xldb] [-display DISPLAY].

All PETSc calls can be traced (useful for determining where a program is hanging without running in the
debugger) with the option

-log_trace [filename]

where filename is optional. By default the traces are printed to the screen. This can also be set with the
command PetscLogTraceBegin(FILE*).

It is also possible to trap signals by using the command

PetscPushSignalHandler(PetscErrorCode (*Handler)(int,void *),void *ctx);

The default handler PetscSignalHandlerDefault() calls PetscError() and then terminates. In
general, a signal in PETSc indicates a catastrophic failure. Any error handler that the user provides should
try to clean up only before exiting. By default all PETSc programs use the default signal handler, although
the user can turn this off at runtime with the option -no_signal_handler .

There is a separate signal handler for floating-point exceptions. The option -fp_trap turns on the floating-
point trap at runtime, and the routine

PetscSetFPTrap(PetscFPTrap flag);

can be used in-line. A flag of PETSC_FP_TRAP_ON indicates that floating-point exceptions should be
trapped, while a value of PETSC_FP_TRAP_OFF (the default) indicates that they should be ignored. Note
that on certain machines, in particular the IBM RS/6000, trapping is very expensive.

A small set of macros is used to make the error handling lightweight. These macros are used throughout
the PETSc libraries and can be employed by the application programmer as well. When an error is first
detected, one should set it by calling

SETERRQ(MPI_Comm comm,PetscErrorCode flag,,char *message);

The user should check the return codes for all PETSc routines (and possibly user-defined routines as well)
with

ierr = PetscRoutine(...);CHKERRQ(PetscErrorCode ierr);

Likewise, all memory allocations should be checked with

ierr = PetscMalloc1(n, &ptr);CHKERRQ(ierr);

If this procedure is followed throughout all of the user’s libraries and codes, any error will by default generate
a clean traceback of the location of the error.

Note that the macro PETSC_FUNCTION_NAME is used to keep track of routine names during error tracebacks.
Users need not worry about this macro in their application codes; however, users can take advantage of
this feature if desired by setting this macro before each user-defined routine that may call SETERRQ(),
CHKERRQ(). A simple example of usage is given below.

PetscErrorCode MyRoutine1() {
/* Declarations Here */
PetscFunctionBeginUser;
/* code here */
PetscFunctionReturn(0);

}

190 Chapter 3. Additional Information

PETSc Users Manual, Release 3.14.2

3.5.7 Numbers

PETSc supports the use of complex numbers in application programs written in C, C++, and Fortran. To do
so, we employ either the C99 complex type or the C++ versions of the PETSc libraries in which the basic
“scalar” datatype, given in PETSc codes by PetscScalar, is defined as complex (or complex<double>
for machines using templated complex class libraries). To work with complex numbers, the user should run
./configure with the additional option --with-scalar-type=complex. The installation instructions
provide detailed instructions for installing PETSc. You can use --with-clanguage=c (the default) to
use the C99 complex numbers or --with-clanguage=c++ to use the C++ complex type9.

Recall that each variant of the PETSc libraries is stored in a different directory, given by ${PETSC_DIR}/
lib/${PETSC_ARCH}

according to the architecture. Thus, the libraries for complex numbers are maintained separately from those
for real numbers. When using any of the complex numbers versions of PETSc, all vector and matrix elements
are treated as complex, even if their imaginary components are zero. Of course, one can elect to use only
the real parts of the complex numbers when using the complex versions of the PETSc libraries; however,
when working only with real numbers in a code, one should use a version of PETSc for real numbers for best
efficiency.

The program KSP Tutorial ex11 solves a linear system with a complex coefficient matrix. Its Fortran
counterpart is KSP Tutorial ex11f.

3.5.8 Parallel Communication

When used in a message-passing environment, all communication within PETSc is done through MPI, the
message-passing interface standard [For94]. Any file that includes petscsys.h (or any other PETSc include
file) can freely use any MPI routine.

3.5.9 Graphics

The PETSc graphics library is not intended to compete with high-quality graphics packages. Instead, it is
intended to be easy to use interactively with PETSc programs. We urge users to generate their publication-
quality graphics using a professional graphics package. If a user wants to hook certain packages into PETSc,
he or she should send a message to petsc-maint@mcs.anl.gov; we will see whether it is reasonable to try to
provide direct interfaces.

Windows as PetscViewers

For drawing predefined PETSc objects such as matrices and vectors, one may first create a viewer using the
command

PetscViewerDrawOpen(MPI_Comm comm,char *display,char *title,int x,int y,int w,int h,
↪→PetscViewer *viewer);

This viewer may be passed to any of the XXXView() routines. Alternately, one may use command-line
options to quickly specify viewer formats, including PetscDraw-based ones; see Viewing From Options.

To draw directly into the viewer, one must obtain the PetscDraw object with the command

PetscViewerDrawGetDraw(PetscViewer viewer,PetscDraw *draw);

9 Note that this option is not required to use PETSc with C++

3.5. Other PETSc Features 191

https://www.mcs.anl.gov/petsc/documentation/installation.html
https://www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/tutorials/ex11.c.html
https://www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/tutorials/ex11f.F90.html
mailto:petsc-maint@mcs.anl.gov

PETSc Users Manual, Release 3.14.2

Then one can call any of the PetscDrawXXX commands on the draw object. If one obtains the draw object
in this manner, one does not call the PetscDrawOpenX() command discussed below.

Predefined viewers, PETSC_VIEWER_DRAW_WORLD and PETSC_VIEWER_DRAW_SELF, may be used at any
time. Their initial use will cause the appropriate window to be created.

Implementations using OpenGL, TikZ, and other formats may be selected with PetscDrawSetType().
PETSc can also produce movies; see PetscDrawSetSaveMovie(), and note that command-line options
can also be convenient; see the PetscDrawSetFromOptions() man page.

By default, PETSc drawing tools employ a private colormap, which remedies the problem of poor color
choices for contour plots due to an external program’s mangling of the colormap. Unfortunately, this may
cause flashing of colors as the mouse is moved between the PETSc windows and other windows. Alternatively,
a shared colormap can be used via the option -draw_x_shared_colormap.

Simple PetscDrawing

With the default format, one can open a window that is not associated with a viewer directly under the X11
Window System or OpenGL with the command

PetscDrawCreate(MPI_Comm comm,char *display,char *title,int x,int y,int w,int h,
↪→PetscDraw *win);
PetscDrawSetFromOptions(win);

All drawing routines are performed relative to the window’s coordinate system and viewport. By default, the
drawing coordinates are from (0,0) to (1,1), where (0,0) indicates the lower left corner of the window.
The application program can change the window coordinates with the command

PetscDrawSetCoordinates(PetscDraw win,PetscReal xl,PetscReal yl,PetscReal xr,
↪→PetscReal yr);

By default, graphics will be drawn in the entire window. To restrict the drawing to a portion of the window,
one may use the command

PetscDrawSetViewPort(PetscDraw win,PetscReal xl,PetscReal yl,PetscReal xr,PetscReal␣
↪→yr);

These arguments, which indicate the fraction of the window in which the drawing should be done, must
satisfy 0 ≤ xl ≤ xr ≤ 1 and 0 ≤ yl ≤ yr ≤ 1.

To draw a line, one uses the command

PetscDrawLine(PetscDraw win,PetscReal xl,PetscReal yl,PetscReal xr,PetscReal yr,int␣
↪→cl);

The argument cl indicates the color (which is an integer between 0 and 255) of the line. A list of predefined
colors may be found in include/petscdraw.h and includes PETSC_DRAW_BLACK, PETSC_DRAW_RED,
PETSC_DRAW_BLUE etc.

To ensure that all graphics actually have been displayed, one should use the command

PetscDrawFlush(PetscDraw win);

When displaying by using double buffering, which is set with the command

PetscDrawSetDoubleBuffer(PetscDraw win);

all processes must call

192 Chapter 3. Additional Information

PETSc Users Manual, Release 3.14.2

PetscDrawFlush(PetscDraw win);

in order to swap the buffers. From the options database one may use -draw_pause n, which causes the
PETSc application to pause n seconds at each PetscDrawPause(). A time of -1 indicates that the
application should pause until receiving mouse input from the user.

Text can be drawn with commands

PetscDrawString(PetscDraw win,PetscReal x,PetscReal y,int color,char *text);
PetscDrawStringVertical(PetscDraw win,PetscReal x,PetscReal y,int color,const char␣
↪→*text);
PetscDrawStringCentered(PetscDraw win,PetscReal x,PetscReal y,int color,const char␣
↪→*text);
PetscDrawStringBoxed(PetscDraw draw,PetscReal sxl,PetscReal syl,int sc,int bc,const␣
↪→char text[],PetscReal *w,PetscReal *h);

The user can set the text font size or determine it with the commands

PetscDrawStringSetSize(PetscDraw win,PetscReal width,PetscReal height);
PetscDrawStringGetSize(PetscDraw win,PetscReal *width,PetscReal *height);

Line Graphs

PETSc includes a set of routines for manipulating simple two-dimensional graphs. These routines, which
begin with PetscDrawAxisDraw(), are usually not used directly by the application programmer. Instead,
the programmer employs the line graph routines to draw simple line graphs. As shown in the listing below,
line graphs are created with the command

PetscDrawLGCreate(PetscDraw win,PetscInt ncurves,PetscDrawLG *ctx);

The argument ncurves indicates how many curves are to be drawn. Points can be added to each of the
curves with the command

PetscDrawLGAddPoint(PetscDrawLG ctx,PetscReal *x,PetscReal *y);

The arguments x and y are arrays containing the next point value for each curve. Several points for each
curve may be added with

PetscDrawLGAddPoints(PetscDrawLG ctx,PetscInt n,PetscReal **x,PetscReal **y);

The line graph is drawn (or redrawn) with the command

PetscDrawLGDraw(PetscDrawLG ctx);

A line graph that is no longer needed can be destroyed with the command

PetscDrawLGDestroy(PetscDrawLG *ctx);

To plot new curves, one can reset a linegraph with the command

PetscDrawLGReset(PetscDrawLG ctx);

The line graph automatically determines the range of values to display on the two axes. The user can change
these defaults with the command

3.5. Other PETSc Features 193

PETSc Users Manual, Release 3.14.2

PetscDrawLGSetLimits(PetscDrawLG ctx,PetscReal xmin,PetscReal xmax,PetscReal ymin,
↪→PetscReal ymax);

It is also possible to change the display of the axes and to label them. This procedure is done by first
obtaining the axes context with the command

PetscDrawLGGetAxis(PetscDrawLG ctx,PetscDrawAxis *axis);

One can set the axes’ colors and labels, respectively, by using the commands

PetscDrawAxisSetColors(PetscDrawAxis axis,int axis_lines,int ticks,int text);
PetscDrawAxisSetLabels(PetscDrawAxis axis,char *top,char *x,char *y);

It is possible to turn off all graphics with the option -nox. This will prevent any windows from being opened
or any drawing actions to be done. This is useful for running large jobs when the graphics overhead is too
large, or for timing.

The full example, Draw Test ex3, follows.

Listing: src/classes/draw/tests/ex3.c

static char help[] = "Plots a simple line graph.\n";

#if defined(PETSC_APPLE_FRAMEWORK)
#import <PETSc/petscsys.h>
#import <PETSc/petscdraw.h>
#else

#include <petscsys.h>
#include <petscdraw.h>
#endif

int main(int argc,char **argv)
{
PetscDraw draw;
PetscDrawLG lg;
PetscDrawAxis axis;
PetscInt n = 15,i,x = 0,y = 0,width = 400,height = 300,nports = 1;
PetscBool useports,flg;
const char *xlabel,*ylabel,*toplabel,*legend;
PetscReal xd,yd;
PetscDrawViewPorts *ports = NULL;
PetscErrorCode ierr;

toplabel = "Top Label"; xlabel = "X-axis Label"; ylabel = "Y-axis Label"; legend =
↪→"Legend";

ierr = PetscInitialize(&argc,&argv,NULL,help);if (ierr) return ierr;
ierr = PetscOptionsGetInt(NULL,NULL,"-x",&x,NULL);CHKERRQ(ierr);
ierr = PetscOptionsGetInt(NULL,NULL,"-y",&y,NULL);CHKERRQ(ierr);
ierr = PetscOptionsGetInt(NULL,NULL,"-width",&width,NULL);CHKERRQ(ierr);
ierr = PetscOptionsGetInt(NULL,NULL,"-height",&height,NULL);CHKERRQ(ierr);
ierr = PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);CHKERRQ(ierr);
ierr = PetscOptionsGetInt(NULL,NULL,"-nports",&nports,&useports);CHKERRQ(ierr);
ierr = PetscOptionsHasName(NULL,NULL,"-nolegend",&flg);CHKERRQ(ierr);
if (flg) legend = NULL;

(continues on next page)

194 Chapter 3. Additional Information

https://www.mcs.anl.gov/petsc/petsc-current/src/sys/classes/draw/tests/ex3.c.html

PETSc Users Manual, Release 3.14.2

(continued from previous page)
ierr = PetscOptionsHasName(NULL,NULL,"-notoplabel",&flg);CHKERRQ(ierr);
if (flg) toplabel = NULL;
ierr = PetscOptionsHasName(NULL,NULL,"-noxlabel",&flg);CHKERRQ(ierr);
if (flg) xlabel = NULL;
ierr = PetscOptionsHasName(NULL,NULL,"-noylabel",&flg);CHKERRQ(ierr);
if (flg) ylabel = NULL;
ierr = PetscOptionsHasName(NULL,NULL,"-nolabels",&flg);CHKERRQ(ierr);
if (flg) {toplabel = NULL; xlabel = NULL; ylabel = NULL;}

ierr = PetscDrawCreate(PETSC_COMM_WORLD,0,"Title",x,y,width,height,&draw);
↪→CHKERRQ(ierr);
ierr = PetscDrawSetFromOptions(draw);CHKERRQ(ierr);
if (useports) {

ierr = PetscDrawViewPortsCreate(draw,nports,&ports);CHKERRQ(ierr);
ierr = PetscDrawViewPortsSet(ports,0);CHKERRQ(ierr);

}
ierr = PetscDrawLGCreate(draw,1,&lg);CHKERRQ(ierr);
ierr = PetscDrawLGSetUseMarkers(lg,PETSC_TRUE);CHKERRQ(ierr);
ierr = PetscDrawLGGetAxis(lg,&axis);CHKERRQ(ierr);
ierr = PetscDrawAxisSetColors(axis,PETSC_DRAW_BLACK,PETSC_DRAW_RED,PETSC_DRAW_BLUE);

↪→CHKERRQ(ierr);
ierr = PetscDrawAxisSetLabels(axis,toplabel,xlabel,ylabel);CHKERRQ(ierr);
ierr = PetscDrawLGSetLegend(lg,&legend);CHKERRQ(ierr);
ierr = PetscDrawLGSetFromOptions(lg);CHKERRQ(ierr);

for (i=0; i<=n; i++) {
xd = (PetscReal)(i - 5); yd = xd*xd;
ierr = PetscDrawLGAddPoint(lg,&xd,&yd);CHKERRQ(ierr);

}
ierr = PetscDrawLGDraw(lg);CHKERRQ(ierr);
ierr = PetscDrawLGSave(lg);CHKERRQ(ierr);

ierr = PetscDrawViewPortsDestroy(ports);CHKERRQ(ierr);
ierr = PetscDrawLGDestroy(&lg);CHKERRQ(ierr);
ierr = PetscDrawDestroy(&draw);CHKERRQ(ierr);
ierr = PetscFinalize();
return ierr;

}

Graphical Convergence Monitor

For both the linear and nonlinear solvers default routines allow one to graphically monitor convergence of the
iterative method. These are accessed via the command line with -ksp_monitor_lg_residualnorm and
-snes_monitor_lg_residualnorm. See also Convergence Monitoring and Convergence Monitoring.

The two functions used are KSPMonitorLGResidualNorm() and KSPMonitorLGResidualNormCre-
ate(). These can easily be modified to serve specialized needs.

3.5. Other PETSc Features 195

PETSc Users Manual, Release 3.14.2

Disabling Graphics at Compile Time

To disable all X-window-based graphics, run ./configure with the additional option --with-x=0

3.5.10 Emacs Users

Many PETSc developers use Emacs, which can be used as a “simple” text editor or a comprehensive devel-
opment environment. For a more integrated development environment, we recommend using lsp-mode (or
eglot) with clangd. The most convenient way to teach clangd what compilation flags to use is to install Bear
(“build ear”) and run:

bear make -B

which will do a complete rebuild (-B) of PETSc and capture the compilation commands in a file named
compile_commands.json, which will be automatically picked up by clangd. You can use the same
procedure when building examples or your own project. It can also be used with any other editor that
supports clangd, including VS Code and Vim. When lsp-mode is accompanied by flycheck, Emacs will
provide real-time feedback and syntax checking, along with refactoring tools provided by clangd.

The easiest way to install packages in recent Emacs is to use the “Options” menu to select “Manage Emacs
Packages”.

Tags

It is sometimes useful to cross-reference tags across projects. Regardless of whether you use lsp-mode, it can
be useful to use GNU Global (install gtags) to provide reverse lookups (e.g. find all call sites for a given
function) across all projects you might work on/browse. Tags for PETSc can be generated by running make
allgtags from ${PETSC_DIR}, or one can generate tags for all projects by running a command such as

find $PETSC_DIR/{include,src,tutorials,$PETSC_ARCH/include} any/other/paths \
-regex '.*\.\(cc\|hh\|cpp\|cxx\|C\|hpp\|c\|h\|cu\)$' \
| grep -v ftn-auto | gtags -f -

from your home directory or wherever you keep source code. If you are making large changes, it is useful to
either set this up to run as a cron job or to make a convenient alias so that refreshing is easy. Then add the
following to ~/.emacs to enable gtags and specify key bindings.

(when (require 'gtags)
(global-set-key (kbd "C-c f") 'gtags-find-file)
(global-set-key (kbd "C-c .") 'gtags-find-tag)
(global-set-key (kbd "C-c r") 'gtags-find-rtag)
(global-set-key (kbd "C-c ,") 'gtags-pop-stack))

(add-hook 'c-mode-common-hook
'(lambda () (gtags-mode t))) ; Or add to existing hook

A more basic alternative to the GNU Global (gtags) approach that does not require adding packages is to
use the builtin etags feature. First, run make alletags from the PETSc home directory to generate the
file ${PETSC_DIR}/TAGS, and then from within Emacs, run

M-x visit-tags-table

where M denotes the Emacs Meta key, and enter the name of the TAGS file. Then the command M-. will
cause Emacs to find the file and line number where a desired PETSc function is defined. Any string in any
of the PETSc files can be found with the command M-x tags-search. To find repeated occurrences, one
can simply use M-, to find the next occurrence.

196 Chapter 3. Additional Information

https://emacs-lsp.github.io/lsp-mode/
https://github.com/joaotavora/eglot
https://clangd.llvm.org/
https://github.com/rizsotto/Bear
https://www.flycheck.org/en/latest/
https://www.gnu.org/software/global/

PETSc Users Manual, Release 3.14.2

3.5.11 VS Code Users

VS Code (unlike Visual Studio Users, described below) is an open source editor with a rich extension
ecosystem. It has excellent integration with clangd and will automatically pick up compile_commands.
json as produced by a command such as bear make -B (see Emacs Users). If you have no prior attachment
to a specific code editor, we recommend trying VS Code.

3.5.12 Vi and Vim Users

See the Emacs Users discussion above for configuration of clangd, which provides integrated development
environment.

If users develop application codes using Vi or Vim the tags feature can be used to search PETSc files quickly
and efficiently. To use this feature, one should first check if the file, ${PETSC_DIR}/CTAGS exists. If this
file is not present, it should be generated by running make alletags from the PETSc home directory.
Once the file exists, from Vi/Vim the user should issue the command

:set tags=CTAGS

from the PETSC_DIR directory and enter the name of the CTAGS file. Then the command “tag functionname”
will cause Vi/Vim to find the file and line number where a desired PETSc function is defined. See, online
tutorials for additional Vi/Vim options that allow searches, etc. It is also possible to use GNU Global with
Vim; see the description for Emacs above.

3.5.13 Eclipse Users

If you are interested in developing code that uses PETSc from Eclipse or developing PETSc in Eclipse
and have knowledge of how to do indexing and build libraries in Eclipse, please contact us at petsc-
dev@mcs.anl.gov.

One way to index and build PETSc in Eclipse is as follows.

1. Open “File→Import→Git→Projects from Git”. In the next two panels, you can either add your existing
local repository or download PETSc from Bitbucket by providing the URL. Most Eclipse distributions
come with Git support. If not, install the EGit plugin. When importing the project, select the wizard
“Import as general project”.

2. Right-click on the project (or the “File” menu on top) and select “New→ Convert to a C/C++ Project
(Adds C/C++ Nature)”. In the setting window, choose “C Project” and specify the project type as
“Shared Library”.

3. Right-click on the C project and open the “Properties” panel. Under “C/C++ Build → Builder
Settings”, set the Build directory to PETSC_DIR and make sure “Generate Makefiles automatically”
is unselected. Under the section “C/C++ General→Paths and Symbols”, add the PETSc paths to
“Includes”.

${PETSC_DIR}/include
${PETSC_DIR}/${PETSC_ARCH}/include

Under the section “C/C++ General\ :math:`\rightarrow`\ index”, choose
“Use active build configuration”.

1. Configure PETSc normally outside Eclipse to generate a makefile and then build the project in Eclipse.
The source code will be parsed by Eclipse.

3.5. Other PETSc Features 197

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=llvm-vs-code-extensions.vscode-clangd
http://www.yolinux.com/TUTORIALS/LinuxTutorialAdvanced_vi.html
http://www.yolinux.com/TUTORIALS/LinuxTutorialAdvanced_vi.html
mailto:petsc-dev@mcs.anl.gov
mailto:petsc-dev@mcs.anl.gov

PETSc Users Manual, Release 3.14.2

If you launch Eclipse from the Dock on Mac OS X, .bashrc will not be loaded (a known OS
X behavior, for security reasons). This will be a problem if you set the environment variables
PETSC_DIR and PETSC_ARCH in .bashrc. A solution which involves replacing the executable can
be found at `/questions/829749/launch-mac-eclipse-with-environment-variables-set
</questions/829749/launch-mac-eclipse-with-environment-variables-set>‘__. Alternatively, you can add
PETSC_DIR and PETSC_ARCH manually under “Properties → C/C++ Build → Environment”.

To allow an Eclipse code to compile with the PETSc include files and link with the PETSc libraries, a PETSc
user has suggested the following.

1. Right-click on your C project and select “Properties → C/C++ Build → Settings”

2. A new window on the righthand side appears with various settings options. Select “Includes” and add
the required PETSc paths,

${PETSC_DIR}/include
${PETSC_DIR}/${PETSC_ARCH}/include

1. Select “Libraries” under the header Linker and set the library search path:

${PETSC_DIR}/${PETSC_ARCH}/lib

and the libraries, for example

m, petsc, stdc++, mpichxx, mpich, lapack, blas, gfortran, dl, rt,gcc_s, pthread, X11

Another PETSc user has provided the following steps to build an Eclipse index for PETSc that can be used
with their own code, without compiling PETSc source into their project.

1. In the user project source directory, create a symlink to the PETSC src/ directory.

2. Refresh the project explorer in Eclipse, so the new symlink is followed.

3. Right-click on the project in the project explorer, and choose “Index → Rebuild”. The index should
now be built.

4. Right-click on the PETSc symlink in the project explorer, and choose “Exclude from build…” to make
sure Eclipse does not try to compile PETSc with the project.

For further examples of using Eclipse with a PETSc-based application, see the documentation for LaMEM10.

3.5.14 Qt Creator Users

This information was provided by Mohammad Mirzadeh. The Qt Creator IDE is part of the Qt SDK,
developed for cross-platform GUI programming using C++. It is available under GPL v3, LGPL v2 and a
commercial license and may be obtained, either as part of the Qt SDK or as stand-alone software. It supports
automatic makefile generation using cross-platform qmake and cmake build systems as well as allowing one
to import projects based on existing, possibly hand-written, makefiles. Qt Creator has a visual debugger
using GDB and LLDB (on Linux and OS X) or Microsoft’s CDB (on Windows) as backends. It also has an
interface to Valgrind’s “memcheck” and “callgrind” tools to detect memory leaks and profile code. It has
built-in support for a variety of version control systems including git, mercurial, and subversion. Finally,
Qt Creator comes fully equipped with auto-completion, function look-up, and code refactoring tools. This
enables one to easily browse source files, find relevant functions, and refactor them across an entire project.

10 doc/ at https://bitbucket.org/bkaus/lamem

198 Chapter 3. Additional Information

https://bitbucket.org/bkaus/lamem

PETSc Users Manual, Release 3.14.2

Creating a Project

When using Qt Creator with qmake, one needs a .pro file. This configuration file tells Qt Creator about
all build/compile options and locations of source files. One may start with a blank .pro file and fill in
configuration options as needed. For example:

The name of the application executable
TARGET = ex1

There are two ways to add PETSc functionality
1-Manual: Set all include path and libs required by PETSc
PETSC_INCLUDE = path/to/petsc_includes # e.g. obtained via running `make␣
↪→getincludedirs'
PETSC_LIBS = path/to/petsc_libs # e.g. obtained via running `make getlinklibs'

INCLUDEPATH += $$PETSC_INCLUDES
LIBS += $$PETSC_LIBS

2-Automatic: Use the PKGCONFIG funtionality
NOTE: PETSc.pc must be in the pkgconfig path. You might need to adjust PKG_CONFIG_
↪→PATH
CONFIG += link_pkgconfig
PKGCONFIG += PETSc

Set appropriate compiler and its flags
QMAKE_CC = path/to/mpicc
QMAKE_CXX = path/to/mpicxx # if this is a cpp project
QMAKE_LINK = path/to/mpicxx # if this is a cpp project

QMAKE_CFLAGS += -O3 # add extra flags here
QMAKE_CXXFLAGS += -O3
QMAKE_LFLAGS += -O3

Add all files that must be compiled
SOURCES += ex1.c source1.c source2.cpp

HEADERS += source1.h source2.h

OTHER_FILES are ignored during compilation but will be shown in file panel in Qt␣
↪→Creator
OTHER_FILES += \

path/to/resource_file \
path/to/another_file

In this example, keywords include:

• TARGET: The name of the application executable.

• INCLUDEPATH: Used at compile time to point to required include files. Essentially, it is used as an
-I \$\$INCLUDEPATH flag for the compiler. This should include all application-specific header files
and those related to PETSc (which may be found via make getincludedirs).

• LIBS: Defines all required external libraries to link with the application. To get PETSc’s linking
libraries, use make getlinklibs.

• CONFIG: Configuration options to be used by qmake. Here, the option link_pkgconfig instructs
qmake to internally use pkgconfig to resolve INCLUDEPATH and LIBS variables.

• PKGCONFIG: Name of the configuration file (the .pc file – here PETSc.pc) to be passed to pkg-
config. Note that for this functionality to work, PETSc.pc must be in path which might require

3.5. Other PETSc Features 199

PETSc Users Manual, Release 3.14.2

adjusting the PKG_CONFIG_PATH enviroment variable. For more information see the Qt Creator
documentation.

• QMAKE_CC and QMAKE_CXX: Define which C/C++ compilers use.

• QMAKE_LINK: Defines the proper linker to be used. Relevant if compiling C++ projects.

• QMAKE_CFLAGS, QMAKE_CXXFLAGS and QMAKE_LFLAGS: Set the corresponding compile and linking
flags.

• SOURCES: Source files to be compiled.

• HEADERS: Header files required by the application.

• OTHER_FILES: Other files to include (source, header, or any other extension). Note that none of the
source files placed here are compiled.

More options can be included in a .pro file; see https://doc.qt.io/qt-5/qmake-project-files.html. Once the
.pro file is generated, the user can simply open it via Qt Creator. Upon opening, one has the option to
create two different build options, debug and release, and switch between the two. For more information
on using the Qt Creator interface and other more advanced aspects of the IDE, refer to https://www.qt.io/
qt-features-libraries-apis-tools-and-ide/

3.5.15 Visual Studio Users

To use PETSc from MS Visual Studio, one would have to compile a PETSc example with its corresponding
makefile and then transcribe all compiler and linker options used in this build into a Visual Studio project
file, in the appropriate format in Visual Studio project settings.

3.5.16 XCode Users (The Apple GUI Development System)

Mac OS X

Follow the instructions in $PETSC_DIR/systems/Apple/OSX/bin/makeall to build the PETSc frame-
work and documentation suitable for use in XCode.

You can then use the PETSc framework in $PETSC_DIR/arch-osx/PETSc.framework in the usual man-
ner for Apple frameworks. See the examples in $PETSC_DIR/systems/Apple/OSX/examples. When
working in XCode, things like function name completion should work for all PETSc functions as well as MPI
functions. You must also link against the Apple Accelerate.framework.

iPhone/iPad iOS

Follow the instructions in $PETSC_DIR/systems/Apple/iOS/bin/iosbuilder.py to build the
PETSc library for use on the iPhone/iPad.

You can then use the PETSc static library in $PETSC_DIR/arch-osx/libPETSc.a in the usual manner
for Apple libraries inside your iOS XCode projects; see the examples in $PETSC_DIR/systems/Apple/
iOS/examples. You must also link against the Apple Accelerate.framework.

200 Chapter 3. Additional Information

https://doc.qt.io/qtcreator/creator-build-settings.html
https://doc.qt.io/qtcreator/creator-build-settings.html
https://doc.qt.io/qt-5/qmake-project-files.html
https://www.qt.io/qt-features-libraries-apis-tools-and-ide/
https://www.qt.io/qt-features-libraries-apis-tools-and-ide/

PETSc Users Manual, Release 3.14.2

3.6 Unimportant and Advanced Features of Matrices and
Solvers

This chapter introduces additional features of the PETSc matrices and solvers. Since most PETSc users
should not need to use these features, we recommend skipping this chapter during an initial reading.

3.6.1 Extracting Submatrices

One can extract a (parallel) submatrix from a given (parallel) using

MatCreateSubMatrix(Mat A,IS rows,IS cols,MatReuse call,Mat *B);

This extracts the rows and columns of the matrix A into B. If call is MAT_INITIAL_MATRIX it will create
the matrix B. If call is MAT_REUSE_MATRIX it will reuse the B created with a previous call.

3.6.2 Matrix Factorization

Normally, PETSc users will access the matrix solvers through the KSP interface, as discussed in KSP: Linear
System Solvers, but the underlying factorization and triangular solve routines are also directly accessible to
the user.

The LU and Cholesky matrix factorizations are split into two or three stages depending on the user’s needs.
The first stage is to calculate an ordering for the matrix. The ordering generally is done to reduce fill in a
sparse factorization; it does not make much sense for a dense matrix.

MatGetOrdering(Mat matrix,MatOrderingType type,IS* rowperm,IS* colperm);

The currently available alternatives for the ordering type are

• MATORDERINGNATURAL - Natural

• MATORDERINGND - Nested Dissection

• MATORDERING1WD - One-way Dissection

• MATORDERINGRCM - Reverse Cuthill-McKee

• MATORDERINGQMD - Quotient Minimum Degree

These orderings can also be set through the options database.

Certain matrix formats may support only a subset of these; more options may be added. Check the manual
pages for up-to-date information. All of these orderings are symmetric at the moment; ordering routines
that are not symmetric may be added. Currently we support orderings only for sequential matrices.

Users can add their own ordering routines by providing a function with the calling sequence

int reorder(Mat A,MatOrderingType type,IS* rowperm,IS* colperm);

Here A is the matrix for which we wish to generate a new ordering, type may be ignored and rowperm and
colperm are the row and column permutations generated by the ordering routine. The user registers the
ordering routine with the command

MatOrderingRegister(MatOrderingType ordname,char *path,char *sname,PetscErrorCode␣
↪→(*reorder)(Mat,MatOrderingType,IS*,IS*)));

3.6. Unimportant and Advanced Features of Matrices and Solvers 201

PETSc Users Manual, Release 3.14.2

The input argument ordname is a string of the user’s choice, either an ordering defined in petscmat.h or
the name of a new ordering introduced by the user. See the code in src/mat/impls/order/sorder.c
and other files in that directory for examples on how the reordering routines may be written.

Once the reordering routine has been registered, it can be selected for use at runtime with the command
line option -pc_factor_mat_ordering_type ordname. If reordering from the API, the user should
provide the ordname as the second input argument of MatGetOrdering().

The following routines perform complete, in-place, symbolic, and numerical factorizations for symmetric and
nonsymmetric matrices, respectively:

MatCholeskyFactor(Mat matrix,IS permutation,const MatFactorInfo *info);
MatLUFactor(Mat matrix,IS rowpermutation,IS columnpermutation,const MatFactorInfo␣
↪→*info);

The argument info->fill > 1 is the predicted fill expected in the factored matrix, as a ratio of the
original fill. For example, info->fill=2.0 would indicate that one expects the factored matrix to have
twice as many nonzeros as the original.

For sparse matrices it is very unlikely that the factorization is actually done in-place. More likely, new space
is allocated for the factored matrix and the old space deallocated, but to the user it appears in-place because
the factored matrix replaces the unfactored matrix.

The two factorization stages can also be performed separately, by using the out-of-place mode, first one
obtains that matrix object that will hold the factor

MatGetFactor(Mat matrix,MatSolverType package,MatFactorType ftype,Mat *factor);

and then performs the factorization

MatCholeskyFactorSymbolic(Mat factor,Mat matrix,IS perm,const MatFactorInfo *info);
MatLUFactorSymbolic(Mat factor,Mat matrix,IS rowperm,IS colperm,const MatFactorInfo␣
↪→*info);
MatCholeskyFactorNumeric(Mat factor,Mat matrix,const MatFactorInfo);
MatLUFactorNumeric(Mat factor,Mat matrix,const MatFactorInfo *info);

In this case, the contents of the matrix result is undefined between the symbolic and numeric factoriza-
tion stages. It is possible to reuse the symbolic factorization. For the second and succeeding factorizations,
one simply calls the numerical factorization with a new input matrix and the same factored result ma-
trix. It is essential that the new input matrix have exactly the same nonzero structure as the original
factored matrix. (The numerical factorization merely overwrites the numerical values in the factored ma-
trix and does not disturb the symbolic portion, thus enabling reuse of the symbolic phase.) In general,
calling XXXFactorSymbolic with a dense matrix will do nothing except allocate the new matrix; the
XXXFactorNumeric routines will do all of the work.

Why provide the plain XXXfactor routines when one could simply call the two-stage routines? The answer
is that if one desires in-place factorization of a sparse matrix, the intermediate stage between the symbolic and
numeric phases cannot be stored in a result matrix, and it does not make sense to store the intermediate
values inside the original matrix that is being transformed. We originally made the combined factor routines
do either in-place or out-of-place factorization, but then decided that this approach was not needed and
could easily lead to confusion.

We do not currently support sparse matrix factorization with pivoting for numerical stability. This is because
trying to both reduce fill and do pivoting can become quite complicated. Instead, we provide a poor stepchild
substitute. After one has obtained a reordering, with MatGetOrdering(Mat A,MatOrdering type,IS
*row,IS *col) one may call

202 Chapter 3. Additional Information

PETSc Users Manual, Release 3.14.2

MatReorderForNonzeroDiagonal(Mat A,PetscReal tol,IS row, IS col);

which will try to reorder the columns to ensure that no values along the diagonal are smaller than tol in a
absolute value. If small values are detected and corrected for, a nonsymmetric permutation of the rows and
columns will result. This is not guaranteed to work, but may help if one was simply unlucky in the original
ordering. When using the KSP solver interface the option -pc_factor_nonzeros_along_diagonal
<tol> may be used. Here, tol is an optional tolerance to decide if a value is nonzero; by default it is
1.e-10.

Once a matrix has been factored, it is natural to solve linear systems. The following four routines enable
this process:

MatSolve(Mat A,Vec x, Vec y);
MatSolveTranspose(Mat A, Vec x, Vec y);
MatSolveAdd(Mat A,Vec x, Vec y, Vec w);
MatSolveTransposeAdd(Mat A, Vec x, Vec y, Vec w);

matrix A of these routines must have been obtained from a factorization routine; otherwise, an error will be
generated. In general, the user should use the KSP solvers introduced in the next chapter rather than using
these factorization and solve routines directly.

3.6.3 Unimportant Details of KSP

PetscDrawAxisDraw(), are usually not used directly by the application programmer Again, virtually all
users should use KSP through the KSP interface and, thus, will not need to know the details that follow.

It is possible to generate a Krylov subspace context with the command

KSPCreate(MPI_Comm comm,KSP *kps);

Before using the Krylov context, one must set the matrix-vector multiplication routine and the preconditioner
with the commands

PCSetOperators(PC pc,Mat Amat,Mat Pmat);
KSPSetPC(KSP ksp,PC pc);

In addition, the KSP solver must be initialized with

KSPSetUp(KSP ksp);

Solving a linear system is done with the command

KSPSolve(KSP ksp,Vec b,Vec x);

Finally, the KSP context should be destroyed with

KSPDestroy(KSP *ksp);

It may seem strange to put the matrix in the preconditioner rather than directly in the KSP; this decision
was the result of much agonizing. The reason is that for SSOR with Eisenstat’s trick, and certain other
preconditioners, the preconditioner has to change the matrix-vector multiply. This procedure could not be
done cleanly if the matrix were stashed in the KSP context that PC cannot access.

Any preconditioner can supply not only the preconditioner, but also a routine that essentially performs a
complete Richardson step. The reason for this is mainly SOR. To use SOR in the Richardson framework,

3.6. Unimportant and Advanced Features of Matrices and Solvers 203

PETSc Users Manual, Release 3.14.2

that is,

un+1 = un +B(f −Aun),

is much more expensive than just updating the values. With this addition it is reasonable to state that
all our iterative methods are obtained by combining a preconditioner from the PC package with a Krylov
method from the KSP package. This strategy makes things much simpler conceptually, so (we hope) clean
code will result. Note: We had this idea already implicitly in older versions of KSP, but, for instance, just
doing Gauss-Seidel with Richardson in old KSP was much more expensive than it had to be. With PETSc
this should not be a problem.

3.6.4 Unimportant Details of PC

Most users will obtain their preconditioner contexts from the KSP context with the command KSPGetPC().
It is possible to create, manipulate, and destroy PC contexts directly, although this capability should rarely
be needed. To create a PC context, one uses the command

PCCreate(MPI_Comm comm,PC *pc);

The routine

PCSetType(PC pc,PCType method);

sets the preconditioner method to be used. The routine

PCSetOperators(PC pc,Mat Amat,Mat Pmat);

set the matrices that are to be used with the preconditioner. The routine

PCGetOperators(PC pc,Mat *Amat,Mat *Pmat);

returns the values set with PCSetOperators().

The preconditioners in PETSc can be used in several ways. The two most basic routines simply apply the
preconditioner or its transpose and are given, respectively, by

PCApply(PC pc,Vec x,Vec y);
PCApplyTranspose(PC pc,Vec x,Vec y);

In particular, for a preconditioner matrix, B, that has been set via PCSetOperators(pc,Amat,Pmat),
the routine PCApply(pc,x,y) computes y = B−1x by solving the linear system By = x with the specified
preconditioner method.

Additional preconditioner routines are

PCApplyBAorAB(PC pc,PCSide right,Vec x,Vec y,Vec work);
PCApplyBAorABTranspose(PC pc,PCSide right,Vec x,Vec y,Vec work);
PCApplyRichardson(PC pc,Vec x,Vec y,Vec work,PetscReal rtol,PetscReal atol, PetscReal␣
↪→dtol,PetscInt maxits,PetscBool zeroguess,PetscInt *outits,
↪→PCRichardsonConvergedReason*);

The first two routines apply the action of the matrix followed by the preconditioner or the preconditioner
followed by the matrix depending on whether the right is PC_LEFT or PC_RIGHT. The final routine applies
its iterations of Richardson’s method. The last three routines are provided to improve efficiency for certain
Krylov subspace methods.

A PC context that is no longer needed can be destroyed with the command

204 Chapter 3. Additional Information

PETSc Users Manual, Release 3.14.2

PCDestroy(PC *pc);

3.7 Running PETSc Tests

3.7.1 Quick start with the tests

For testing builds, the general invocation from the PETSC_DIR is:

make [-j <n>] -f gmakefile test PETSC_ARCH=<PETSC_ARCH>

For testing ./configure that used the --prefix option, the general invocation from the installation
(prefix) directory is:

make [-j <n>] -f share/petsc/examples/gmakefile test

For a full list of options, use

make -f gmakefile help-test

3.7.2 Understanding test output and more information

As discussed in Running PETSc Tests, users should set PETSC_DIR and PETSC_ARCH before running the
tests, or can provide them on the command line as below.

To check if the libraries are working do:

make PETSC_DIR=<PETSC_DIR> PETSC_ARCH=<PETSC_ARCH> test

A comprehensive set of tests can be run with

make PETSC_DIR=<PETSC_DIR> PETSC_ARCH=<PETSC_ARCH> alltests

or

make [-j <n>] -f gmakefile test PETSC_ARCH=<PETSC_ARCH>

Depending on your machine’s configuration running the full test suite (above) can take from a few minutes
to a couple hours. Note that currently we do not have a mechanism for automatically running the test suite
on batch computer systems except to obtain an interactive compute node (via the batch system) and run
the tests on that node (this assumes that the compilers are available on the interactive compute nodes.

The test reporting system classifies them according to the Test Anywhere Protocal (TAP)11. In brief, the
categories are

• ok The test passed.

• not ok The test failed.

• not ok #SKIP The test was skipped, usually because build requirements were not met (for example,
an external solver library was required, but PETSc was not ./configure for that library.) compiled
against it).

• ok #TODO The test is under development by the developers.
11 See https://testanything.org/tap-specification.html

3.7. Running PETSc Tests 205

https://testanything.org/tap-specification.html

PETSc Users Manual, Release 3.14.2

The tests are a series of shell scripts, generated by information contained within the test source file, that are
invoked by the makefile system. The tests are run in ${PETSC_DIR}/${PETSC_ARCH}/tests with the
same directory as the source tree underneath. For testing installs, the default location is ${PREFIX_DIR}/
tests but this can be changed with the TESTDIR location. (See Directory Structure). A label is used to
denote where it can be found within the source tree. For example, test vec_vec_tutorials-ex6, which
can be run e.g. with

make -f gmakefile test search='vec_vec_tutorials-ex6'

(see the discussion of search below), denotes the shell script:

${PETSC_DIR}/${PETSC_ARCH}/tests/vec/vec/tutorials/runex6.sh

These shell scripts can be run independently in those directories, and take arguments to show the commands
run, change arguments, etc. Use the -h option to the shell script to see these options.

Often, you want to run only a subset of tests. Our makefiles use gmake’s wildcard syntax. In this syntax,
% is a wild card character and is passed in using the search argument. Two wildcard characters cannot
be used in a search, so the searchin argument is used to provide the equivalent of %pattern% search.
The default examples have default arguments, and we often wish to test examples with various arguments;
we use the argsearch argument for these searches. Like searchin, it does not use wildcards, but rather
whether the string is within the arguments.

Some examples are:

make -f gmakefile test search='ts%' # Run all TS examples
make -f gmakefile test searchin='tutorials' # Run all tutorials
make -f gmakefile test search='ts%' searchin='tutorials' # Run all TS tutorials
make -f gmakefile test argsearch='cuda' # Run examples with cuda in␣
↪→arguments
make -f gmakefile test test-fail='1'
make -f gmakefile test query='requires' queryval='*MPI_PROCESS_SHARED_MEMORY*'

It is useful before invoking the tests to see what targets will be run. The print-test target helps with
this:

make -f gmakefile print-test argsearch='cuda'

To see all of the test targets which would be run, this command can be used:

make -f gmakefile print-test

For testing in install directories, some examples are:

cd ${PREFIX_DIR}; make -f share/petsc/examples/gmakefile.test test TESTDIR=mytests

or

cd ${PREFIX_DIR}/share/petsc/examples; make -f gmakefile test TESTDIR=$PWD/mytests

where the latter is needed to make have it run in the local directory instead of $PREFIX_DIR.

To learn more about the test system details, one can look at the the PETSc developers documentation.

206 Chapter 3. Additional Information

https://docs.petsc.org/en/latest/developers

PETSc Users Manual, Release 3.14.2

3.8 Acknowledgments

We thank all PETSc users for their many suggestions, bug reports, and encouragement.

Recent contributors to PETSc can be seen by visualizing the history of the PETSc git repository, for example
at github.com/petsc/petsc/graphs/contributors.

Earlier contributors to PETSc include:

• Asbjorn Hoiland Aarrestad - the explicit Runge-Kutta implementations (TSRK)

• G. Anciaux and J. Roman - the interfaces to the partitioning packages PTScotch, Chaco, and Party;

• Allison Baker - the flexible GMRES (KSPFGMRES) and LGMRES (KSPLGMRES) code;

• Chad Carroll - Win32 graphics;

• Ethan Coon - the PetscBag and many bug fixes;

• Cameron Cooper - portions of the VecScatter routines;

• Patrick Farrell - PCPATCH and SNESPATCH;

• Paulo Goldfeld - the balancing Neumann-Neumann preconditioner (`PCNN);

• Matt Hille;

• Joel Malard - the BICGStab(l) implementation (KSPBCGSL);

• Paul Mullowney, enhancements to portions of the NVIDIA GPU interface;

• Dave May - the GCR implementation (KSPGCR);

• Peter Mell - portions of the DMDA routines;

• Richard Mills - the AIJPERM matrix format (MATAIJPERM) for the Cray X1 and universal F90 array
interface;

• Victor Minden - the NVIDIA GPU interface;

• Lawrence Mitchell - PCPATCH and SNESPATCH;

• Todd Munson - the LUSOL (sparse solver in MINOS) interface (MATSOLVERLUSOL) and several Krylov
methods;

• Adam Powell - the PETSc Debian package;

• Robert Scheichl - the MINRES implementation (KSPMINRES);

• Kerry Stevens - the pthread-based Vec and Mat classes plus the various thread pools (no longer
available);

• Karen Toonen - design and implementation of much of the PETSc web pages;

• Desire Nuentsa Wakam - the deflated GMRES implementation (KSPDGMRES);

• Florian Wechsung - PCPATCH and SNESPATCH;

• Liyang Xu - the interface to PVODE, now SUNDIALS/CVODE (TSSUNDIALS).

PETSc source code contains modified routines from the following public domain software packages:

• LINPACK - dense matrix factorization and solve; converted to C using f2c and then hand-optimized
for small matrix sizes, for block matrix data structures;

• MINPACK - see page ; sequential matrix coloring routines for finite difference Jacobian evaluations;
converted to C using f2c;

3.8. Acknowledgments 207

https://github.com/petsc/petsc/graphs/contributors

PETSc Users Manual, Release 3.14.2

• SPARSPAK - see page ; matrix reordering routines, converted to C using f2c;

• libtfs - the efficient, parallel direct solver developed by Henry Tufo and Paul Fischer for the direct
solution of a coarse grid problem (a linear system with very few degrees of freedom per processor).

PETSc interfaces to the following external software:

• BLAS and LAPACK - numerical linear algebra;

• Chaco - A graph partitioning package;
http://www.cs.sandia.gov/CRF/chac.html

• Elemental - Jack Poulson’s parallel dense matrix solver package;
http://libelemental.org/

• HDF5 - the data model, library, and file format for storing and managing data,
https://support.hdfgroup.org/HDF5/

• hypre - the LLNL preconditioner library;
https://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods

• LUSOL - sparse LU factorization code (part of MINOS) developed by Michael Saunders, Systems
Optimization Laboratory, Stanford University;
http://www.sbsi-sol-optimize.com/

• MATLAB - see page ;

• Metis/ParMeTiS - see page , parallel graph partitioner,
https://www-users.cs.umn.edu/~karypis/metis/

• MUMPS - see page , MUltifrontal Massively Parallel sparse direct Solver developed by Patrick
Amestoy, Iain Duff, Jacko Koster, and Jean-Yves L’Excellent;
http://mumps.enseeiht.fr/

• Party - A graph partitioning package;

• PaStiX - Parallel sparse LU and Cholesky solvers;
http://pastix.gforge.inria.fr/

• PTScotch - A graph partitioning package;
http://www.labri.fr/Perso/~pelegrin/scotch/

• SPAI - for parallel sparse approximate inverse preconditioning;
https://cccs.unibas.ch/lehre/software-packages/

• SuiteSparse - sequential sparse solvers, see page , developed by Timothy A. Davis;
http://faculty.cse.tamu.edu/davis/suitesparse.html

• SUNDIALS/CVODE - see page , parallel ODE integrator;
https://computation.llnl.gov/projects/sundials

• SuperLU and SuperLU_Dist - see page , the efficient sparse LU codes developed by Jim Demmel,
Xiaoye S. Li, and John Gilbert;
https://crd-legacy.lbl.gov/~xiaoye/SuperLU

• STRUMPACK - the STRUctured Matrix Package;
https://portal.nersc.gov/project/sparse/strumpack/

• Triangle and Tetgen - mesh generation packages;
https://www.cs.cmu.edu/~quake/triangle.html
http://wias-berlin.de/software/tetgen/

208 Chapter 3. Additional Information

http://www.cs.sandia.gov/CRF/chac.html
http://libelemental.org/
https://support.hdfgroup.org/HDF5/
https://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods
http://www.sbsi-sol-optimize.com/
https://www-users.cs.umn.edu/~karypis/metis/
http://mumps.enseeiht.fr/
http://pastix.gforge.inria.fr/
http://www.labri.fr/Perso/~pelegrin/scotch/
https://cccs.unibas.ch/lehre/software-packages/
http://faculty.cse.tamu.edu/davis/suitesparse.html
https://computation.llnl.gov/projects/sundials
https://crd-legacy.lbl.gov/~xiaoye/SuperLU
https://portal.nersc.gov/project/sparse/strumpack/
https://www.cs.cmu.edu/~quake/triangle.html
http://wias-berlin.de/software/tetgen/

PETSc Users Manual, Release 3.14.2

• Trilinos/ML - Sandia’s main multigrid preconditioning package;
https://trilinos.github.io/

• Zoltan - graph partitioners from Sandia National Laboratory;
http://www.cs.sandia.gov/zoltan/

These are all optional packages and do not need to be installed to use PETSc.

PETSc software is developed and maintained using

• Emacs editor

• Git revision control system

• Python

PETSc documentation has been generated using

• Sowing text processing tools developed by Bill Gropp

• c2html

3.8. Acknowledgments 209

https://trilinos.github.io/
http://www.cs.sandia.gov/zoltan/
https://git-scm.com/
http://wgropp.cs.illinois.edu/projects/software/sowing/

PETSc Users Manual, Release 3.14.2

210 Chapter 3. Additional Information

BIBLIOGRAPHY

[For94] MPI Forum. MPI: a message-passing interface standard. International J. Supercomputing Appli-
cations, 1994.

[GLS94] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Programming
with the Message Passing Interface. MIT Press, 1994.

[EM17] Jennifer B Erway and Roummel F Marcia. On solving large-scale limited-memory quasi-newton
equations. Linear Algebra and its Applications, 515:196–225, 2017.

[GL89] J. C. Gilbert and C. Lemarechal. Some numerical experiments with variable-storage Quasi-Newton
algorithms. Mathematical Programming, 45:407–434, 1989.

[Gri12] Andreas Griewank. Broyden updating, the good and the bad! Optimization Stories, Documenta
Mathematica. Extra Volume: Optimization Stories, pages 301–315, 2012.

[NW99] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer-Verlag, New York, 1999.

[CS97] X.-C. Cai and M. Sarkis. A restricted additive Schwarz preconditioner for general sparse linear
systems. Technical Report CU-CS 843-97, Computer Science Department, University of Colorado-
Boulder, 1997. (accepted by SIAM J. of Scientific Computing).

[Eis81] S. Eisenstat. Efficient implementation of a class of CG methods. SIAM J. Sci. Stat. Comput.,
2:1–4, 1981.

[EES83] S.C. Eisenstat, H.C. Elman, and M.H. Schultz. Variational iterative methods for nonsymmetric
systems of linear equations. SIAM Journal on Numerical Analysis, 20(2):345–357, 1983.

[FGN92] R. Freund, G. H. Golub, and N. Nachtigal. Iterative Solution of Linear Systems, pages 57–100.
Acta Numerica. Cambridge University Press, 1992.

[Fre93] Roland W. Freund. A transpose-free quasi-minimal residual algorithm for non-Hermitian linear
systems. SIAM J. Sci. Stat. Comput., 14:470–482, 1993.

[GAMV13] P. Ghysels, T.J. Ashby, K. Meerbergen, and W. Vanroose. Hiding global communication latency
in the GMRES algorithm on massively parallel machines. SIAM Journal on Scientific Computing,
35(1):C48–C71, 2013.

[GV14] P. Ghysels and W. Vanroose. Hiding global synchronization latency in the preconditioned con-
jugate gradient algorithm. Parallel Computing, 40(7):224–238, 2014. 7th Workshop on Parallel
Matrix Algorithms and Applications. doi:10.1016/j.parco.2013.06.001.

[HS52] Magnus R. Hestenes and Eduard Steifel. Methods of conjugate gradients for solving linear systems.
J. Research of the National Bureau of Standards, 49:409–436, 1952.

[ISG15] Tobin Isaac, Georg Stadler, and Omar Ghattas. Solution of nonlinear Stokes equations discretized
by high-order finite elements on nonconforming and anisotropic meshes, with application to ice
sheet dynamics. SIAM J. Sci. Comput., 37(6):804–833, 2015.

211

https://doi.org/10.1016/j.parco.2013.06.001

PETSc Users Manual, Release 3.14.2

[Not00] Yvan Notay. Flexible Conjugate Gradients. SIAM Journal on Scientific Computing, 22(4):1444–
1460, 2000.

[PS75] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM
Journal on Numerical Analysis, 12:617–629, 1975.

[Saa93] Youcef Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on Scientific
Computing, 14(2):461–469, 1993. doi:10.1137/0914028.

[SS86] Youcef Saad and Martin H. Schultz. GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856–869, 1986.

[Saa03] Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2nd edition, 2003.
doi:10.1016/S1570-579X(01)80025-2.

[Son89] Peter Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci.
Stat. Comput., 10:36–52, 1989.

[vdV03] H. van der Vorst. Iterative Krylov Methods for Large Linear Systems. Cambridge University Press,
2003. ISBN 9780521818285.

[vandVorst92] H. A. van der Vorst. BiCGSTAB: a fast and smoothly converging variant of BiCG for the
solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 13:631–644, 1992.

[SSM16] P. Sanan, S. M. Schnepp, and D. A. May. Pipelined, flexible Krylov subspace methods. SIAM
Journal on Scientific Computing, 38(5):C441–C470, 2016. doi:10.1137/15M1049130.

[SBjorstadG96] Barry F. Smith, Petter Bjørstad, and William D. Gropp. Domain Decomposition: Parallel
Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, 1996.
URL: http://www.mcs.anl.gov/~bsmith/ddbook.html.

[BS90] Peter N. Brown and Youcef Saad. Hybrid Krylov methods for nonlinear systems of equations.
SIAM J. Sci. Stat. Comput., 11:450–481, 1990.

[DS83] J. E. Dennis, Jr. and Robert B. Schnabel. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ, 1983.

[EW96] S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in an inexact Newton method.
SIAM J. Scientific Computing, 17:16–32, 1996.

[JP93] Mark T. Jones and Paul E. Plassmann. A parallel graph coloring heuristic. SIAM J. Sci. Comput.,
14(3):654–669, 1993.

[MoreSGH84] Jorge J. Moré, Danny C. Sorenson, Burton S. Garbow, and Kenneth E. Hillstrom. The MIN-
PACK project. In Wayne R. Cowell, editor, Sources and Development of Mathematical Software,
88–111. 1984.

[PW98] M. Pernice and H. F. Walker. NITSOL: a Newton iterative solver for nonlinear systems. SIAM
J. Sci. Stat. Comput., 19:302–318, 1998.

[BKST15] Peter R. Brune, Matthew G. Knepley, Barry F. Smith, and Xuemin Tu. Com-
posing scalable nonlinear algebraic solvers. SIAM Review, 57(4):535–565, 2015.
http://www.mcs.anl.gov/papers/P2010-0112.pdf. URL: http://www.mcs.anl.gov/papers/
P2010-0112.pdf, doi:10.1137/130936725.

[ARS97] U.M. Ascher, S.J. Ruuth, and R.J. Spiteri. Implicit-explicit Runge-Kutta methods for time-
dependent partial differential equations. Applied Numerical Mathematics, 25:151–167, 1997.

[AP98] Uri M Ascher and Linda R Petzold. Computer methods for ordinary differential equations and
differential-algebraic equations. Volume 61. SIAM, 1998.

[BPR11] S. Boscarino, L. Pareschi, and G. Russo. Implicit-explicit Runge-Kutta schemes for hyperbolic
systems and kinetic equations in the diffusion limit. Arxiv preprint arXiv:1110.4375, 2011.

212 Bibliography

https://doi.org/10.1137/0914028
https://doi.org/10.1016/S1570-579X(01)80025-2
https://doi.org/10.1137/15M1049130
http://www.mcs.anl.gov/~bsmith/ddbook.html
http://www.mcs.anl.gov/papers/P2010-0112.pdf
http://www.mcs.anl.gov/papers/P2010-0112.pdf
https://doi.org/10.1137/130936725

[BJW07] J.C. Butcher, Z. Jackiewicz, and W.M. Wright. Error propagation of general linear meth-
ods for ordinary differential equations. Journal of Complexity, 23(4-6):560–580, 2007.
doi:10.1016/j.jco.2007.01.009.

[Con16] E.M. Constantinescu. Estimating global errors in time stepping. ArXiv e-prints, March 2016.
arXiv:1503.05166.

[CS10] E.M. Constantinescu and A. Sandu. Extrapolated implicit-explicit time stepping. SIAM Journal
on Scientific Computing, 31(6):4452–4477, 2010. doi:10.1137/080732833.

[GKC13] F.X. Giraldo, J.F. Kelly, and E.M. Constantinescu. Implicit-explicit formulations of a three-
dimensional nonhydrostatic unified model of the atmosphere (NUMA). SIAM Journal on Scien-
tific Computing, 35(5):B1162–B1194, 2013. doi:10.1137/120876034.

[JWH00] K.E. Jansen, C.H. Whiting, and G.M. Hulbert. A generalized-alpha method for integrating the
filtered Navier–Stokes equations with a stabilized finite element method. Computer Methods in
Applied Mechanics and Engineering, 190(3):305–319, 2000.

[KC03] C.A. Kennedy and M.H. Carpenter. Additive Runge-Kutta schemes for convection-
diffusion-reaction equations. Appl. Numer. Math., 44(1-2):139–181, 2003. doi:10.1016/S0168-
9274(02)00138-1.

[Ket08] D.I. Ketcheson. Highly efficient strong stability-preserving Runge–Kutta methods with low-
storage implementations. SIAM Journal on Scientific Computing, 30(4):2113–2136, 2008.
doi:10.1137/07070485X.

[OColomesB16] Oriol Colomés and Santiago Badia. Segregated Runge–Kutta methods for the incompress-
ible Navier–Stokes equations. International Journal for Numerical Methods in Engineering,
105(5):372–400, 2016.

[PR05] L. Pareschi and G. Russo. Implicit-explicit Runge-Kutta schemes and applications to hyperbolic
systems with relaxation. Journal of Scientific Computing, 25(1):129–155, 2005.

[RA05] J. Rang and L. Angermann. New Rosenbrock W-methods of order 3 for partial differential alge-
braic equations of index 1. BIT Numerical Mathematics, 45(4):761–787, 2005.

[SVB+97] A. Sandu, J.G. Verwer, J.G. Blom, E.J. Spee, G.R. Carmichael, and F.A. Potra. Benchmarking
stiff ode solvers for atmospheric chemistry problems II: Rosenbrock solvers. Atmospheric Envi-
ronment, 31(20):3459–3472, 1997.

[BBKL11] Achi Brandt, James Brannick, Karsten Kahl, and Irene Livshits. Bootstrap AMG. SIAM Journal
on Scientific Computing, 33(2):612–632, 2011.

[Getal] William Gropp and et. al. MPICH Web page. http://www.mpich.org. URL: http://www.mpich.
org.

[HL91] Virginia Herrarte and Ewing Lusk. Studying parallel program behavior with Upshot. Technical
Report ANL-91/15, Argonne National Laboratory, August 1991.

https://doi.org/10.1016/j.jco.2007.01.009
https://arxiv.org/abs/1503.05166
https://doi.org/10.1137/080732833
https://doi.org/10.1137/120876034
https://doi.org/10.1016/S0168-9274(02)00138-1
https://doi.org/10.1016/S0168-9274(02)00138-1
https://doi.org/10.1137/07070485X
http://www.mpich.org
http://www.mpich.org

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 240
Argonne, IL 60439

www.anl.gov

	Introduction to PETSc
	About This Manual
	Getting Started
	Suggested Reading
	Running PETSc Programs
	Writing PETSc Programs
	Simple PETSc Examples
	Profiling Programs
	Writing Application Codes with PETSc
	Citing PETSc
	Directory Structure

	Programming with PETSc
	Vectors and Parallel Data
	Creating and Assembling Vectors
	Basic Vector Operations
	Indexing and Ordering
	Structured Grids Using Distributed Arrays
	Vectors Related to Unstructured Grids

	Matrices
	Creating and Assembling Matrices
	Basic Matrix Operations
	Matrix-Free Matrices
	Other Matrix Operations
	Partitioning

	KSP: Linear System Solvers
	Using KSP
	Solving Successive Linear Systems
	Krylov Methods
	Preconditioners
	Solving Block Matrices
	Solving Singular Systems
	Using External Linear Solvers

	SNES: Nonlinear Solvers
	Basic SNES Usage
	The Nonlinear Solvers
	General Options
	Inexact Newton-like Methods
	Matrix-Free Methods
	Finite Difference Jacobian Approximations
	Variational Inequalities
	Nonlinear Preconditioning

	TS: Scalable ODE and DAE Solvers
	Basic TS Options
	DAE Formulations
	Using Implicit-Explicit (IMEX) Methods
	GLEE methods
	Using fully implicit methods
	Using the Explicit Runge-Kutta timestepper with variable timesteps
	Special Cases
	Monitoring and visualizing solutions
	Error control via variable time-stepping
	Handling of discontinuities
	Using TChem from PETSc
	Using Sundials from PETSc

	Performing sensitivity analysis
	Using the discrete adjoint methods
	Checkpointing

	Solving Steady-State Problems with Pseudo-Timestepping
	High Level Support for Multigrid with KSPSetDM() and SNESSetDM()
	Adaptive Interpolation

	DMPlex: Unstructured Grids in PETSc
	Representing Unstructured Grids
	Data on Unstructured Grids
	Evaluating Residuals
	Networks

	Additional Information
	PETSc for Fortran Users
	C vs. Fortran Interfaces
	Sample Fortran Programs

	Using MATLAB with PETSc
	Dumping Data for MATLAB
	Sending Data to an Interactive MATLAB Session
	Using the MATLAB Compute Engine

	Profiling
	Basic Profiling Information
	Profiling Application Codes
	Profiling Multiple Sections of Code
	Restricting Event Logging
	Interpreting -log_info Output: Informative Messages
	Time
	Saving Output to a File
	Accurate Profiling and Paging Overheads

	Hints for Performance Tuning
	Maximizing Memory Bandwidth
	Performance Pitfalls and Advice

	Other PETSc Features
	PETSc on a process subset
	Runtime Options
	Viewers: Looking at PETSc Objects
	Using SAWs with PETSc
	Debugging
	Error Handling
	Numbers
	Parallel Communication
	Graphics
	Emacs Users
	VS Code Users
	Vi and Vim Users
	Eclipse Users
	Qt Creator Users
	Visual Studio Users
	XCode Users (The Apple GUI Development System)

	Unimportant and Advanced Features of Matrices and Solvers
	Extracting Submatrices
	Matrix Factorization
	Unimportant Details of KSP
	Unimportant Details of PC

	Running PETSc Tests
	Quick start with the tests
	Understanding test output and more information

	Acknowledgments

	Bibliography

