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Abstraet--A centrally projected image is based on an object, a viewpoint and a viewer orientation. The programs 
reported to date which calculate centrally projected images require all of these as input. Instructions for the 
programs usually suggest that the hypothetical observer face toward the center of the object. There are two major 
problems with this: (1) there may be no clear way of defining the "center", and (2) an orientation chosen in this 
manner may result in parts of the object lying behind or to the side of the observer and hence being invisible or 
severely distorted under the projection. This paper describes an algorithm for calculating a viewing direction which 
will render visible the entire object whenever this is possible, and will furthermore minimize distortion in the 
projected image. 

A FORMALIZATION OF THE PROBLEM 

We will begin by describing central projection. Sup- 
pose an object in three-space is viewed by an observer 
with fixed position and orientation. Let VP be the view- 
point, described by a three-vector. Let VA, VR and VU 
be unit vectors which, in the orientation of the observer, 
point in the ahead, right and up directions respectively. 
(VR, VA, VU) must be orthonormal and right-handed (i.e. 
VU = VR × VA). VA is referred to as the "viewing direc- 
tion". The "projection plane" or "image space" is the 
plane which is normal to VA and contains the point 
VP + VA. The image space has a coordinate system with 
origin VP + VA and basis vectors VR and VU. 

In addition to the underlying (x,y,z) coordinates, 
three-space can be given a coordinate system in which 
VP is the origin and (VR, VA, VU) are basis vectors; 
these will be called "observer" coordinates. Let P be an 
object point; the observer coordinates (r, a, u) of P are 
the projections of P-VP onto VR, VA and VU, given by 

r = [P-VP, VR] 

a = [P-VP, VA] 

u = [P-VP, VU] 

(1) 

where [ , ] denotes the scalar product. 
P is visible iff it lies in front of the observer, i.e. iff 

a > 0. If P is visible, its "central projection" is the point 
P' where the ray which starts at VP and goes through P 
intersects the projection plane. The image space coor- 
dinates of P' are (px,  py) where 

p x  = r/a 
(2) 

py  = u/a. 

This is shown by similar triangles, noting that the pro- 
jection plane, in the observer coordinate system, is the 
plane a = 1. 

Three-space is divided into visible and invisible parts 
by the plane a = 0. It is possible to compute the image of 
a simple object which is only partially visible without 
clipping it in three dimensions. This can be done as 

follows: if the segment from Pt to P2 is in the object, 
where [Pt-VP, VA]> 0 and [P2-VP, VA]<0,  we can 
compute the images P', and P~ by the above formulae, 
ignoring for the moment the invisibility of P2. The pro- 
jection of the visible part of the segment is the ray in 
the image space which begins at P'I and goes directly 
away from P~ (that is, goes in the direction of P;-P-;). 

Most projection programs, however, are not capable of 
handling this case, and hence need a viewing direction 
which makes the entire object visible. Call a viewing 
direction "feasible" iff it has this property (the notion of 
feasibility is a function of object and viewpoint). For 
some viewpoints there is no feasible viewing direction, 
namely those points in the closed convex hull of the 
object. For any viewpoint the set of feasible viewing 
directions is a subset of the unit sphere which lies 
entirely in some hemisphere; it is convex in the sense 
that if V, and V2 are feasible, so is any point on the 
smaller arc of the great circle through V~ and V2. 
Assuming that the object is closed and bounded, the set 
is open in the sphere topology. 

If there is a feasible viewing direction there are 
infinitely many, and we need a criterion for selecting the 
best one. To this end we will analyze distortion in 
centrally projected images; our criterion will be lack of 
distortion. 

DISTORTION FROM CENTRAL PROJECTION 

Let us assume that a viewpoint VP has been used to 
calculate an image, and that we now look at the image 
from points other than VP. When viewed orthogonally, 
the image at a point P' appears locally to be stretched out 
in the direction of the line through P' and the image 
space origin. In particular, if the object is a small sphere 
whose center has projection P', then the image is the 
intersection of the projection plane and the cone with 
vertex VP generated by the sphere, and hence is an 
ellipse. The major axis of the ellipse lies on a line 
through the image space origin. Let a be the angle 
between P'-VP and VA, b be half the angle subtended by 
the sphere from VP, and r be the distance from VP to P'. 

35 



36 D. P. ANDERSON 

P' divides the major axis into two segments with lengths 

L~ = r sin (b)/cos (a + b) 
(3) 

L2 = r sin (b)/cos (a - b). 

Hence the major axis has length 

Lmajor = L~ + L2 

= r sin (b)(l/cos (a + b) + 1/cos (a - b)). 
(4) 

The minor axis has length 

Lminor = 2r sin (b). (5) 

As the size of the sphere (and hence of its image) goes 
to zero, the ratio of the lengths of the major and minor 
axes approaches a limit which is at least one and is equal 
to one iff P' is the image space origin. We adopt this limit 
as a measure of the local distortion at P'; it is given by 

D(P') = lim LmaiodLmi,o, 
b-,O 

= lim (l/cos (a + b) + 1/cos (a - b))/2 (6) 
b-.~O 

= 1/cos (a). 

As a is varied from 0 to 7r/2, the distortion increases 
strictly and without bound. Thus minimizing the maxi- 
mum distortion is equivalent to minimizing the maximum 
value of a. 

So far we have defined the notions of feasible and 
optimal viewing directions, and have found that the 
optimal direction is the vector VA which minimizes the 
maximum over object points P of the angle between VA 
and P-VP. We now present an algorithm to find this 
direction. 

MOTIVATION FOR THE ALGORITHM 

Assume that the convex hull of the object is a poly- 
hedron. Let PI . . . . .  P, be a set of object points which 
includes the set of vertices of the convex hull; e.g. if the 
object is a set of polygons, P~ . . . . .  P, could be taken to 
be the set of vertices of the polygons. Define the "image 
vectors" to be the vectors Pi-VP normalized to unit 
length; these are directions from the observer to object 
points and should now be visualized as emanating from 
the origin. In what follows, we will deal with solid 
circular cones which are single and whose vertex is the 
origin. Such a cone will be called "feasible" iff it includes 
all the image vectors (which is equivalent to including the 
entire object). The axial direction of a feasible cone is a 
feasible viewing direction. The "optimal" cone is the 
narrowest feasible cone; the axial direction of the opti- 
mal cone is the optimal viewing direction. 

The optimal cone satisfies one of the following con- 
ditions: 

(1) the two most distant image vectors (in the sense of 

angular separation) both lie on the surface of the cone, 
and their midvector is its axis, or 

(2) at least three image vectors lie on the surface of 
the cone. 

This assertion can be proved by contradiction: 
suppose that the optimal cone satisfies neither (1) nor (2). 
If no image vectors lie on its surface, then we can shrink 
the cone slightly, keeping its axis fixed, and get a nar- 
rower feasible cone. If exactly one image vector, V, lies 
on the cone surface, we can find a narrower feasible 
cone by moving the axis slightly toward V, while con- 
straining the cone to have V on its surface. If the cone 
has exactly two image vectors Vl and V2 on its surface, 
but its axis is not the midvector of V~ and V2, then we 
move the axis slightly toward the midvector, while con- 
straining the cone to have Vj and V2 on its surface. In 
any case, we have found a narrower feasible cone, which 
contradicts the assumption of optimality. 

The following observation makes the algorithm practi- 
cal: a cone includes all the image vectors iff it includes 
the edges of the smallest convex solid pyramid whose 
vertex is the origin and which includes all the image 
vectors. Hence the optimal cone for the pyramid edges is 
the same as the optimal cone for the entire set of image 
vectors; hence we can discard all the image vectors 
except the pyramid edges. In addition, the image vectors 
which lie on the surface of the optimal cone are edges of 
the pyramid. 

We combine the above facts to get an algorithm which 
is fast yet general: first, the subset of the image vectora 
consisting of the edges of the convex pyramid is con- 
structed. Second, we find the two most distant edges and 
see if the cone centered at their midvector and contain- 
ing them on its surface also contains the other edges. If 
so, this cone is optimal. Otherwise, for every set of three 
edges, we see if the (unique) cone whose surface passes 
through them contains the other edges. The optimal cone 
is then the narrowest one satisfying this condition. 

It is interesting to consider the limit as the optimal 
cone becomes narrow, for then the geometry of the part 
of the sphere surface on which the image vectors lie 
becomes like that of the plane. The problem is then 
transformed to that of finding the smallest disc which 
contains a given set of points in the plane. Suitable 
translations of the above two assertions hold in the 
planar case: namely, that the optimal disc is determined 
by the vertices of the convex hull of the set of points, 
and its boundary either passes through three of the 
points or passes through two and is centered at their 
midpoint. 

DETAILS OF THE ORIENTATION METHOD 

Let us now examine the computational details of the 
spherical case. The convex pyramid defined earlier is 
constructed inductively, starting with the pyramid 
determined by any three non-coplanar image vectors, 
then adding the remaining image vectors one at a time. 
At each stage the pyramid is described by a circularly 
linked list of edge vectors, ordered clockwise around the 
pyramid surface when viewed from outside the pyramid. 
Suppose V1 immediately precedes V2 in the edge list; 
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then V~ x V2 is normal to the pyramid face with edges V, 
and V2. The pyramid consists of those points which have 
nonnegative scalar products with all the face normals. 
Since the face normals are used often, they are stored in 
a list with the same link structure as the edge list. 

After the initial pyramid has been formed using three 
non-coplanar image vectors, each remaining image vec- 
tor V is processed as follows: the scalar products be- 
tween V and each of the face normals are found. These 
will be positive (negative) if V is on the right (wrong) side 
of the face plane. If all the scalar products are non- 
negative then V lies within the current pyramid and is 
ignored. If all the scalar products are negative then V lies 
in the pyramid which is the reflection of the current 
pyramid through the origin; any cone which includes the 
current pyramid must exclude V, hence there is no 
feasible cone and therefore no feasible viewing direction. 
If some of the scalar products are negative and some are 
not, then V becomes a new pyramid edge. The faces of 
the pyramid which gave negative scalar products neces- 
sarily are contiguous; the edges which are interior to this 
set of faces are removed from the list, and are replaced 
by V. The list of face normals is updated accordingly. 

When all the vectors have been processed, the 
pyramid is complete and we are assured of the existence 
of a feasible viewing direction. It is important to make 
the set of edges as small as possible. If two or more 
faces are found to be nearly coplanar they can be 
replaced by a single face; this is done by removing the 
edges interior to the set of faces. 

We now find the two edge vectors V~ and V2 whose 
angular distance is greatest (i.e. whose scalar product is 
least). The midvector Vc is calculated as the normalized 
sum of V~ and V2. Let d = [Vc, Vl]; d is the cosine of the 
angle between Vc and V~ (or Vc and V2). The cone with 
axis V, and which contains V~ and V2 on its surface is 
optimal iff it is feasible, which in turn is equivalent to 
[Vc, V] -> d for all edges V. 

If this cone is not feasible, we then loop over every 
three-element subset (V~, V2, V3) of the set of edge vec- 
tors. A vector V is found which makes equal acute angles 
with V~, V2 and V3. This is done by finding a non-zero 
solution to the underdetermined linear system [V, Vt] = 
[V, V2] = IV, V3], negating if necessary to give a positive 
scalar product with V~, then normalizing. If [V, Vd-< 
[V,V'] for all edge vectors V', then V is feasible; the 
optimal direction is the V corresponding to some 
(V~,V2, V3) which is feasible and for which [V, Vd is 
greatest. 

This concludes the calculation of VA. Define the "im- 
age radius" to be the largest distance from the image 
space origin to an image point. A bonus of the algorithm 
is that it gives the image radius; this is tan (x), where x is 
the angle between the axis and surface of the optimal 
cone. This can be used for automatic scaling; that is, 
given a desired radius r of the plotted image, the pro- 
gram uses an appropriate scaling factor, namely r/tan (x). 
Note that this scale factor is also the distance (in the 
physical units of the output device) at which the picture 
should be viewed, orthogonally to the image space origin, 

to eliminate distortion. The image radius is minimized by 
the optimal viewing direction and is achieved by at least 
two image points. 

CALCULATION OF THE OTHER 

ORIENTATION VECTORS 

Having computed VA, we must still find VR and VU 
such that (VR, VA, VU) is an orthonormal right-handed 
basis. This condition does not uniquely determine VR 
and VU; the leeway corresponds to rotating the final 
image. We might ask that, in addition, the angle between 
VU and (0,0,1) be as small as possible given that 
[VU, VA] = 0, for then the "up" direction in the image 
will correspond as closely as possible to the up (i.e. z) 
direction in three-space. This will be the case if VR is 
taken to be (0,0, I)×VA and then, necessarily, VU is 
VA × VR. 

EFFICIENCY 

Let n be the number of image vectors. A reasonable 
guess for the order of the average number of faces in the 
convex pyramid, as it is being constructed, is n '/2. In 
constructing the pyramid we must find the scalar product 
of each image vector with each face normal of the 
pyramid at that stage, so the time to construct the 
pyramid is of order n 3/2. The remaining computation time 
depends on the case. Finding the two most distant vec- 
tors takes time of order n, so if the two-vector cone is 
feasible we're done in total time of order n 3/2. Otherwise, 
for every three-element subset of the edges we must see 
if the other edges lie in the cone determined by the three; 
there are about n 3/2 three-element subsets, so there are 
on the order of n 2 steps in this case. 

It should be pointed out that n need not be of the same 
order of magnitude as the number of endpoints or ver- 
tices in the object. With a slight loss of accuracy and 
generality, a complex part of the object can be represen- 
ted by the vertices of any convex polyhedron known to 
include it. In particular, the entire object could be 
represented by the eight points determined by its limits 
in the coordinate directions. 

The a!gorithm has been implemented in structured 
FORTRAN on a Harris Slash 7 minicomputer, as part of 
a grid-point surface plotting program. For a 40 by 40 
surface (n = 1600) between one and two CPU seconds 
are needed to find the viewing direction. Refinements of 
the algorithm could undoubtedly reduce this still further. 

CONCLUSION 

The problem of finding an optimal viewing direction 
has been formalized, and a solution given. The algorithm 
is not hard to program, and is efficient enough for inter- 
active and real-time applications. One would hope that 
future graphics programs which use central projection 
will handle the orientation problem automatically, using 
this method or another like it. 
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