1 страниц (11 вхождений)
SMath vs Mathcad - Сообщения
#1 Опубликовано: 06.08.2024 11:32:14
I can solve this problem in Mathcad - see pls the picture.
But cannot in SMath - see the SMath-file :-(
Help please

6-1-Mister-Class-a-b-c.sm (15 КиБ) скачан 58 раз(а).
But cannot in SMath - see the SMath-file :-(
Help please
6-1-Mister-Class-a-b-c.sm (15 КиБ) скачан 58 раз(а).
#2 Опубликовано: 06.08.2024 13:22:51
1 пользователям понравился этот пост
Valery Ochkov 06.08.2024 14:30:00
#3 Опубликовано: 06.08.2024 14:34:07
Thanks and sorry!
I do not see in your solution derivatives!
???
I do not see in your solution derivatives!
???
#4 Опубликовано: 06.08.2024 18:36:47
Here is a version with Maxima Fit(). Note that Fit() uses a least squares procedure, whereas Mathcad obviously directly minimizes the average linear distance between data points and model.
Ordinary linear regression with slope and intersect is a least squares fit for the vertical distance.
6-1-Mister-Class-a-b-c_kr.sm (35 КиБ) скачан 71 раз(а).
![2024-08-06 13_32_52-SMath Solver - [6-1-Mister-Class-a-b-c_kr.sm_].png](/ru-RU/file/gqc7pn/2024-08-06-13_32_52-SMath-Solver---_6-1-Mister-Class-a-b-c_kr_sm___png)
Ordinary linear regression with slope and intersect is a least squares fit for the vertical distance.
6-1-Mister-Class-a-b-c_kr.sm (35 КиБ) скачан 71 раз(а).
Martin Kraska
Pre-configured portable distribution of SMath Studio: https://en.smath.info/wiki/SMath%20with%20Plugins.ashx
1 пользователям понравился этот пост
Valery Ochkov 06.08.2024 18:53:00
#5 Опубликовано: 06.08.2024 19:22:00
#6 Опубликовано: 06.08.2024 22:02:42
#7 Опубликовано: 07.08.2024 00:29:39
Interesting paper. Yet the authors keep one question out of scope: In case of orthogonal distance minimizing (be it linear or quadratic), rescaling of the data matter. (other than with ordinary linear regression). This means that you get different results if you provide your data not in cm but in mm.
Perhaps the data should be scaled such that the uncertainty (measurement error) is of similar numeric value for x and y.
Perhaps the data should be scaled such that the uncertainty (measurement error) is of similar numeric value for x and y.
Martin Kraska
Pre-configured portable distribution of SMath Studio: https://en.smath.info/wiki/SMath%20with%20Plugins.ashx
#8 Опубликовано: 07.08.2024 02:01:47
#9 Опубликовано: 07.08.2024 02:12:28
#10 Опубликовано: 07.08.2024 15:24:46
Wrote
The perpendicular distance is only geometrically perpendicular in the graph if the axes tick ratio is 1 (as I tried to set in my earlier post) unless you introduce an anisotropic metric for the distance (or standardize the quantities).
Martin Kraska
Pre-configured portable distribution of SMath Studio: https://en.smath.info/wiki/SMath%20with%20Plugins.ashx
#11 Опубликовано: 07.08.2024 19:51:31
Hi. Chosen different guess values, we can reproduce the maxima result. Also, notice that meanwhile the Maxima MSE function decreases, the "classical" one increases. I'm not sure how to call Maxima MSE for implicit functions.
mse.sm (25 КиБ) скачан 61 раз(а).
Best regards
Alvaro
mse.sm (25 КиБ) скачан 61 раз(а).
Best regards
Alvaro
1 страниц (11 вхождений)
-
Новые сообщения
-
Нет новых сообщений