METHOD OF INTEGRATION OF ROMBERG

METHOD OF INTEGRATION OF ROMBERG - Integration Example by the Romberg Integration Method - Сообщения

#1 Опубликовано: 09.01.2018 20:15:33
CBG

CBG

77 сообщений из 312 понравились пользователям.

Группа: User

This is a small example of the application of the Romberg Integration Method


Romberg_Method.sm (13 КиБ) скачан 88 раз(а).



Best Regards

Carlos
1 пользователям понравился этот пост
frapuano 10.01.2018 03:57:00
#2 Опубликовано: 09.01.2018 23:49:22
Jean Giraud

Jean Giraud

983 сообщений из 6866 понравились пользователям.

Группа: User

Wrote

This is a small example of the application of the Romberg Integration Method



n = 20 [your original] ... Smath 6179 didn't stop in 5 minutes.
Can't explain such incompatibility between versions ?

Thanks
#3 Опубликовано: 10.01.2018 01:06:23
Jean Giraud

Jean Giraud

983 сообщений из 6866 понравились пользователям.

Группа: User

... this doctored version works 6179, but so prohibitive in computation time.
n = 20 1200 sec. Romberg is like Simpson => occasionally more accurate.
All in all, if I would have to chose the most useful integrator, the choice
is Adaptive [from years of working that kind of maths]
I lost the Mathcad code, can survive with Simpson Domain ... any kind of accuracy,
for any meshing 'n'.

Thanks Carlos, for your contribution.

Jean

Romberg_Method [Doctored 6179].sm (13 КиБ) скачан 67 раз(а).

#4 Опубликовано: 10.01.2018 13:18:19
CBG

CBG

77 сообщений из 312 понравились пользователям.

Группа: User

By----Jean
n = 20 [your original] ... Smath 6179 didn't stop in 5 minutes.
Can't explain such incompatibility between versions.




With n = 20 on my PC the Algorithm takes 1 min 54.473 sec.
Being the same algorithm in different versions of the same program,
I guess the difference in time is given by the ability of the latest
software to take advantage of the power of the processor and the amount of RAM.

Obviously, the power and number of cores in the processor must also influence.

Regards

Carlos
  • Новые сообщения Новые сообщения
  • Нет новых сообщений Нет новых сообщений