1 страниц (15 вхождений)
Numerical parameterization implicit surfaces of the form f (x, y, z) = 0 - Сообщения
#1 Опубликовано: 29.05.2015 20:25:23
The grid lines are found by Draghilev Method
Method 1.
Building a line of intersection of the required surface
with the plane x = 0. This line is rotated in steps of 2 * Pi / s
about a vertical axis by an angle 2 * Pi, where s is the number of steps (the grid lines)



Method 1.
Building a line of intersection of the required surface
with the plane x = 0. This line is rotated in steps of 2 * Pi / s
about a vertical axis by an angle 2 * Pi, where s is the number of steps (the grid lines)



1 пользователям понравился этот пост
Davide Carpi 31.05.2015 07:19:00
#2 Опубликовано: 29.05.2015 20:39:51
1 пользователям понравился этот пост
Davide Carpi 31.05.2015 07:19:00
#3 Опубликовано: 17.12.2016 18:17:47
The graph an implicit surface depicted by lines
Examples of the idea of the algorithm taken from the publication of Alexey Ivanov
http://www.mapleprimes.com/questions/219995-Finding-A-Convinient-Parametrization-Of-Surfaces#answer233804








Файл не найден.Файл не найден.Файл не найден.Файл не найден.Файл не найден.
Examples of the idea of the algorithm taken from the publication of Alexey Ivanov
http://www.mapleprimes.com/questions/219995-Finding-A-Convinient-Parametrization-Of-Surfaces#answer233804








Файл не найден.Файл не найден.Файл не найден.Файл не найден.Файл не найден.
3 пользователям понравился этот пост
Вячеслав Мезенцев 19.12.2016 01:43:00, Davide Carpi 18.12.2016 19:04:00, frapuano 18.12.2016 05:42:00
#4 Опубликовано: 29.01.2017 16:56:41
Two surfaces are taken from the site
http://xrt.wikidot.com/gallery:implicit
The calculation algorithm:
1.Find the line of intersection of the given surface with the plane Z=0
2.Through each point hold the plane x1 = C and find the line of intersection of that plane with a given surface.These lines represent a given surface.


Файл не найден.Файл не найден.
http://xrt.wikidot.com/gallery:implicit
The calculation algorithm:
1.Find the line of intersection of the given surface with the plane Z=0
2.Through each point hold the plane x1 = C and find the line of intersection of that plane with a given surface.These lines represent a given surface.


Файл не найден.Файл не найден.
1 пользователям понравился этот пост
Davide Carpi 30.01.2017 09:18:00
#5 Опубликовано: 29.01.2017 23:28:16
Thanks for these two animations. In each one, the last three plots
stay red, though the animated plot works fine. A small detail:
each work sheet has three definitions left over at page 17.
Jean
stay red, though the animated plot works fine. A small detail:
each work sheet has three definitions left over at page 17.
Jean
1 пользователям понравился этот пост
Davide Carpi 30.01.2017 09:18:00
#6 Опубликовано: 30.01.2017 03:51:39
Thank you Jean,
Worksheets corrected. In addition, in the algorithm for calculating along with x1 = C can be used x2 = C:

double torus x2.sm (73 КиБ) скачан 80 раз(а).
Worksheets corrected. In addition, in the algorithm for calculating along with x1 = C can be used x2 = C:

double torus x2.sm (73 КиБ) скачан 80 раз(а).
2 пользователям понравился этот пост
#7 Опубликовано: 31.01.2017 17:50:55
The tube in the form of a line of intersection of the cylinder and the torus (See post 7)
http://en.smath.info/forum/yaf_postst2307_Method-A-B--Draghilev-and-animation-spatial-mechanisms.aspx

Time calculation, 9 min.
Villarceau 9.sm (39 КиБ) скачан 69 раз(а).
http://en.smath.info/forum/yaf_postst2307_Method-A-B--Draghilev-and-animation-spatial-mechanisms.aspx

Time calculation, 9 min.
Villarceau 9.sm (39 КиБ) скачан 69 раз(а).
1 пользователям понравился этот пост
Davide Carpi 01.02.2017 05:58:00
#8 Опубликовано: 01.03.2017 04:25:37
1 пользователям понравился этот пост
Davide Carpi 01.03.2017 06:42:00
#9 Опубликовано: 01.03.2017 04:44:07
The surface of the Wikipedia
https://en.wikipedia.org/wiki/File:Tri-brezel.svg

WiciSurf.sm (106 КиБ) скачан 76 раз(а).
https://en.wikipedia.org/wiki/File:Tri-brezel.svg

WiciSurf.sm (106 КиБ) скачан 76 раз(а).
1 пользователям понравился этот пост
Davide Carpi 01.03.2017 06:42:00
#10 Опубликовано: 14.06.2017 13:27:49
Non-circular cylindrical vessels with quasi-ellipsoidal ends
Krivoshapko S.N. Ivanov V.N,Encyclopedia of Analytical Surfaces ,Springer,2015




Non-circular cylindrical vessels.pdf (1 МиБ) скачан 86 раз(а).
Non-circular cylindrical vessels.sm (209 КиБ) скачан 73 раз(а).
Shell1.sm (255 КиБ) скачан 74 раз(а).
Shell2.sm (33 КиБ) скачан 71 раз(а).
Shell3.sm (34 КиБ) скачан 72 раз(а).
Krivoshapko S.N. Ivanov V.N,Encyclopedia of Analytical Surfaces ,Springer,2015




Non-circular cylindrical vessels.pdf (1 МиБ) скачан 86 раз(а).
Non-circular cylindrical vessels.sm (209 КиБ) скачан 73 раз(а).
Shell1.sm (255 КиБ) скачан 74 раз(а).
Shell2.sm (33 КиБ) скачан 71 раз(а).
Shell3.sm (34 КиБ) скачан 72 раз(а).
#11 Опубликовано: 15.06.2017 09:43:57
Thanks Ber7 for the work sheets [Not finished downloading].
If you visit this document, I'm wondering:
"How to add red points in this plot".
Thanks in advance ... Jean
Maths sph2xyz.sm (13 КиБ) скачан 72 раз(а).
If you visit this document, I'm wondering:
"How to add red points in this plot".
Thanks in advance ... Jean
Maths sph2xyz.sm (13 КиБ) скачан 72 раз(а).
#12 Опубликовано: 15.06.2017 12:23:51
Hello Jean,
Unfortunately, the 3d chart does not allow you to draw points.
Exit (hopefully temporary) -make a 3d chart on a 2d chart.
Maths sph2xyz2d.sm (21 КиБ) скачан 82 раз(а).
Unfortunately, the 3d chart does not allow you to draw points.
Exit (hopefully temporary) -make a 3d chart on a 2d chart.
Maths sph2xyz2d.sm (21 КиБ) скачан 82 раз(а).
#13 Опубликовано: 06.02.2018 03:56:52
3 пользователям понравился этот пост
frapuano 06.02.2018 04:34:00, Martin Kraska 06.02.2018 04:59:00, Radovan Omorjan 06.02.2018 06:22:00
#14 Опубликовано: 06.02.2018 05:06:49
Nice examples!
Just some remarks for those who want to play around with Maxima Draw.
ImplicitMaxima_Kr.sm (492 КиБ) скачан 76 раз(а).
![2018-02-06 08_55_49-SMath Studio - [ImplicitMaxima.sm_].png](/ru-RU/file/BoD4rH/2018-02-06-08_55_49-SMath-Studio---_ImplicitMaxima_sm___png)
Just some remarks for those who want to play around with Maxima Draw.
- Instead of Image region with Draw() command you can use Maxima Draw3D region with interactive zoom, rotation and resize and a settings dialog.
Insert-> Maxima-> Draw3D - The performance isn't overwhelming, as the image is recalculated for each interaction.
- The snippet "draw" provides help texts for the available draw commands and options.
- Follow the link in my signature to see how to configure SMath with Maxima.
ImplicitMaxima_Kr.sm (492 КиБ) скачан 76 раз(а).
Martin Kraska
Pre-configured portable distribution of SMath Studio: https://en.smath.info/wiki/SMath%20with%20Plugins.ashx
4 пользователям понравился этот пост
Вячеслав Мезенцев 06.02.2018 06:15:00, Radovan Omorjan 06.02.2018 06:22:00, frapuano 06.02.2018 10:28:00, Fridel Selitsky 06.02.2018 05:08:00
1 страниц (15 вхождений)
-
Новые сообщения
-
Нет новых сообщений