Draghilev method revisited

Draghilev method revisited - Сообщения

#41 Опубликовано: 08.11.2018 17:37:16
Alvaro Diaz Falconi

Alvaro Diaz Falconi

992 сообщений из 1675 понравились пользователям.

Группа: User

Wrote

The parameterization by Draghilev method.The starting point is taken near the bifurcation point (0,0).



Just a very little modifications: using norme(J) and the SMath ability for handling undefined parameters.

Clipboard02.gif
ContourTifoleum.sm (16 КиБ) скачан 79 раз(а).

Best regards.
Alvaro.
2 пользователям понравился этот пост
frapuano 09.11.2018 08:20:00, Fridel Selitsky 09.11.2018 06:23:00
#42 Опубликовано: 09.11.2018 05:29:40
Fridel Selitsky

Fridel Selitsky

520 сообщений из 451 понравились пользователям.

Группа: User

Thank you, Alvaro. The norme function simplifies the code and reduces the calculation time.
Example of using norme when solving ODE

LorenzPointsAreEquidistantc.sm (6 КиБ) скачан 87 раз(а).
2 пользователям понравился этот пост
frapuano 09.11.2018 08:20:00, Alvaro Diaz Falconi 09.11.2018 12:19:00
#43 Опубликовано: 09.11.2018 13:08:46
Alvaro Diaz Falconi

Alvaro Diaz Falconi

992 сообщений из 1675 понравились пользователям.

Группа: User

Hi Ber. I don't remember to read nothing in the literature about equally spaced points in the numerical solution of the ode, except for the opposite: adaptive steps, but referring for the time variable, not the X,Y,Z solution points. About how you apparently get the same distance between solution points, i.e. sqrt(X^2+Y^2+Z^2), I guess that the background theory must to be in the Draghilev method and how the solution (X,Y,Z) is obtained from the differential equation. You have a very interesting point for investigate and publish about it.

I try to investigate the relationship between the symbolic ode solution and the paramatrization, but the symbolic solutions are quite complicated, and I don't have simple examples.

Apparently the distance between the points is 1 (guess can be easily proved because you divide by the norme the system), and this seems to provide more stable numerical solutions for the system (can be applied here Lyapunov's theorems?)

Clipboard08.gif

Unfortunately in this example I introduce the factor 1/1000 for avoid numerical over max limit error for the case without norme.

Best regards.
Alvaro.
#44 Опубликовано: 10.11.2018 23:39:23
Jean Giraud

Jean Giraud

983 сообщений из 6866 понравились пользователям.

Группа: User

Wrote

The parameterization by Draghilev method.The starting point is taken near the bifurcation point (0,0).


Thanks Ber7, gorgeous
For this particular Trifolium, once created it is easy to collect
as many as desired to any scale corresponding to Draghilev 'a'
The great tool here, is the bidirectional fmesh(f(x),x0,x1,mesh)

Cheers ... Jean

2D Parametric Plot [Create Trifolium].sm (31 КиБ) скачан 84 раз(а).
#45 Опубликовано: 11.11.2018 02:48:41
Fridel Selitsky

Fridel Selitsky

520 сообщений из 451 понравились пользователям.

Группа: User

Thank you Jean, I suggest a small change in the animation.
TrifoliumAnim.sm (24 КиБ) скачан 74 раз(а).
#46 Опубликовано: 11.11.2018 11:48:44
Jean Giraud

Jean Giraud

983 сообщений из 6866 понравились пользователям.

Группа: User

Wrote

I suggest a small change in the animation.


Thanks Ber7 ... even more compacted.
Trifolium:=stack(b1,b2,b3,b4) from inversing f4(x) <= f3(x).

0Anim Trifolium [Windmill Ber7].sm (25 КиБ) скачан 70 раз(а).

EolNew.gif

#47 Опубликовано: 24.11.2018 16:03:02
Fridel Selitsky

Fridel Selitsky

520 сообщений из 451 понравились пользователям.

Группа: User

Graph of implicit function with bifurcation point (Problem on
the calculation of the arch)

https://en.smath.info/forum/yaf_postst7262_Solution-of-nonlinear-equations-by-Draghilev-method-in-Engineering.aspx

The graph consists of three curves that occur at the bifurcation point.
1. Find the coordinates of the bifurcation point
2.The starting point for each of the three graphs is taken near the bifurcation point
3. Build graphics by Draghilev method

Point Bifurcation.sm (38 КиБ) скачан 75 раз(а).
1 пользователям понравился этот пост
sergio 24.11.2018 16:39:00
#48 Опубликовано: 25.11.2018 22:29:54
Jean Giraud

Jean Giraud

983 сообщений из 6866 понравились пользователям.

Группа: User

Wrote

The graph consists of three curves that occur at the bifurcation point.
1. Find the coordinates of the bifurcation point
2.The starting point for each of the three graphs is taken near the bifurcation point
3. Build graphics by Draghilev method



Thanks Ber7.
This version works fine compared to the previous "arca" that never stopped pedaling .
By same token, I'm puzzled by the Lagrange points. Where those contours come from ?

LagrangePoints.PNG
#49 Опубликовано: 26.11.2018 04:56:38
frapuano

frapuano

13 сообщений из 115 понравились пользователям.

Группа: User

Joan

from Wikipedia it is stated that they are involved in Astronomy and that for 2 large bodies there are 5 of these points so I guess that your pictures/worksheet refers on how to calculate them all(their positions).

https://en.wikipedia.org/wiki/Lagrangian_point

Best regards

Franco
#50 Опубликовано: 28.11.2018 10:30:11
Jean Giraud

Jean Giraud

983 сообщений из 6866 понравились пользователям.

Группа: User

Wrote

Thank you, Alvaro. The norme function simplifies the code and reduces the calculation time.
Example of using norme when solving ODE



dn_GearsBDF is nearly ½ time. I think its Lorentz

LorentzAlvaro.PNG
#51 Опубликовано: 05.01.2019 10:22:29
алексей

алексей

17 сообщений из 78 понравились пользователям.

Группа: User

Maple, Draghilev's method. The inverse problem of kinematics. For those who want to try hard and to do better in SMath.
#52 Опубликовано: 05.01.2019 12:10:14
Jean Giraud

Jean Giraud

983 сообщений из 6866 понравились пользователям.

Группа: User

Wrote

hose who want to try hard and to do better in SMath.


Thanks for the suggestion. My head is not oblate like Extraterrestrials !
#53 Опубликовано: 06.01.2019 05:18:45
Fridel Selitsky

Fridel Selitsky

520 сообщений из 451 понравились пользователям.

Группа: User

Wrote

. I don't remember to read nothing in the literature about equally spaced points in the numerical solution of the ode, except for the opposite: adaptive steps, but referring for the time variable, not the X,Y,Z solution points. About how you apparently get the same distance between solution points, i.e. sqrt(X^2+Y^2+Z^2), I guess that the background theory must to be in the Draghilev method and how the solution (X,Y,Z) is obtained from the differential equation. You have a very interesting point for investigate and publish about it.
Apparently the distance between the points is 1 (guess can be easily proved because you divide by the norme the system), and this seems to provide more stable numerical solutions for the system (can be applied here Lyapunov's theorems?)

Best regards.
Alvaro.


An article about the effectiveness of the solution of the system diff. equations for parameterization integral curve through arc length
Russiy.pdf (607 КиБ) скачан 95 раз(а).

2 пользователям понравился этот пост
Alvaro Diaz Falconi 07.01.2019 00:07:00, frapuano 06.01.2019 09:21:00
#54 Опубликовано: 08.01.2019 18:02:47
Alvaro Diaz Falconi

Alvaro Diaz Falconi

992 сообщений из 1675 понравились пользователям.

Группа: User

Wrote

Wrote

. I don't remember ...


An article about the effectiveness of the solution of the system diff. equations for parameterization integral curve through arc length
Russiy.pdf (607 КиБ) скачан 95 раз(а).



Thanks for the paper. Now you found the keywords for this point, which seems to be "Arc Length Method". This give only 79 results at google search:
Clipboard04.gif

Results are related with mechanical engineering for finite elements analysis. From the first result, having this attached file: https://scholar.harvard.edu/files/vasios/files/ArcLength.pdf
Clipboard02.gif

Clipboard03.gif

But actually I don't find any appointment nor observation that solution points are equally spaced. Notice that It could be some "obvious" point for, given f(t,x,x' ) = 0, plot for x(t) it's equally spaced if one transform it to f(s,x,x' ) with s as the arc length. But it's immediate for me that the plot for the state space (x,x' ) seems to be equally spaced too, as in some smath examples here in this topic.

Also, for the observation that can apply Lyapunov theorems about stability of solutions, there are some references in the 79 google's search results. The application here of Lyapunov is related about the stability of the found solutions, because authors using the parametrization along the arc length for ill conditioned systems.

Wrote

. Apparently the distance between the points is 1 (guess can be easily proved because you divide by the norme the system), and this seems to provide more stable numerical solutions for the system (can be applied here Lyapunov's theorems?)



Best regards.
Alvaro.
2 пользователям понравился этот пост
frapuano 08.01.2019 18:23:00, Fridel Selitsky 09.01.2019 02:27:00
#55 Опубликовано: 26.02.2019 14:32:50
Fridel Selitsky

Fridel Selitsky

520 сообщений из 451 понравились пользователям.

Группа: User

Finding Minimum Distanceof a Point from Curve
(with Draghilev method)



MinDistDragilev.sm (23 КиБ) скачан 81 раз(а).
4 пользователям понравился этот пост
Davide Carpi 25.03.2019 08:39:00, Andrey Ivashov 26.02.2019 16:12:00, sergio 26.02.2019 16:47:00, Alvaro Diaz Falconi 26.02.2019 17:37:00
#56 Опубликовано: 26.02.2019 15:07:47
Jean Giraud

Jean Giraud

983 сообщений из 6866 понравились пользователям.

Группа: User

Wrote

Finding Minimum Distance of a Point from Curve


Thanks Ber7 ... works fine.

#57 Опубликовано: 13.03.2019 14:47:37
Fridel Selitsky

Fridel Selitsky

520 сообщений из 451 понравились пользователям.

Группа: User

Distance from point to implicit curve(with al_nleqsolve)
A thick red line is the normal to the curve at point a.


FindDist.pdf (243 КиБ) скачан 69 раз(а).
FindDist.sm (72 КиБ) скачан 81 раз(а).
4 пользователям понравился этот пост
frapuano 13.03.2019 17:49:00, NDTM Amarasekera 13.03.2019 15:38:00, Andrey Ivashov 13.03.2019 17:23:00, Davide Carpi 25.03.2019 08:39:00
#58 Опубликовано: 24.03.2019 13:53:07
Fridel Selitsky

Fridel Selitsky

520 сообщений из 451 понравились пользователям.

Группа: User

Refined the algorithm and added examples
DistMod.sm (51 КиБ) скачан 77 раз(а).

DistMod (4).png
3 пользователям понравился этот пост
frapuano 24.03.2019 14:30:00, sergio 24.03.2019 14:05:00, Davide Carpi 25.03.2019 08:39:00
#59 Опубликовано: 24.03.2019 18:18:49
Jean Giraud

Jean Giraud

983 сообщений из 6866 понравились пользователям.

Группа: User

Wrote

Refined the algorithm and added examples


Thanks Ber7,
looks interesting but couldn't doctor SS 6179.
#60 Опубликовано: 25.03.2019 08:19:26
Fridel Selitsky

Fridel Selitsky

520 сообщений из 451 понравились пользователям.

Группа: User

How the algorithm works.
Each time you press F9, we set the new position of point A

Animat.sm (21 КиБ) скачан 70 раз(а).
2 пользователям понравился этот пост
NDTM Amarasekera 25.03.2019 12:22:00, Davide Carpi 25.03.2019 08:39:00
  • Новые сообщения Новые сообщения
  • Нет новых сообщений Нет новых сообщений